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Abstract

Beluga is a proof environment based on the logical framework LF that
provides infrastructural support for representing formal systems and proofs
about them. As a consequence, meta-theoretic proofs are precise and com-
pact. However, programmers write proofs as total recursive programs. This
can be challenging and cumbersome.

We present the design and implementation of Harpoon, an interactive
proof environment built on top of Beluga. Harpoon users develop proofs
using a small, fixed set of tactics. Behind the scenes, the execution of tactics
elaborates a proof script that reflects the subgoal structure of the proof. We
model incomplete proofs using contextual variables to represent holes. We
give a sound translation of proof scripts into Beluga programs which allows
us to execute them. Proof scripts and programs seamlessly interact and can
be used interchangeably.

We have used Harpoon for examples ranging from simple type safety
proofs for MiniML to normalization proofs including the recently proposed
POPLMark Reloaded challenge. Our implementation is a part of Beluga on
GitHub at https://github.com/Beluga-lang/Beluga and the reference manual
is available at https://beluga-lang.readthedocs.io/.

https://github.com/Beluga-lang/Beluga
https://beluga-lang.readthedocs.io/


Résumé

Beluga est un assistant de preuves basé sur le cadre logique (logical frame-
work) LF et donnant une infrastructure quant à la représentation de systèmes
formels et de preuves concernant ceux-ci. Par conséquence, ces preuves me-
tathéoriques sont précises et compactes. Cependant, on développe une preuve
avec Beluga en tant que programme récursif total, ce qui est difficile et en-
combrant.

Nous présentons alors la conception de Harpoon, une extension à Beluga,
avec lequel on fait le développement interactif de preuves. L’utilisateur de
Harpoon construit une preuve en utilisant un petit ensemble fermé d’ac-
tions. L’exécution de celles-ci élabore un texte de preuve (proof script) qui
reflète la structure des sous-objectifs qui se présentent dans la preuve. Nous
modélisons les preuves incomplètes en utilisant des variables contextuelles
pour représenter les sous-objectifs qui restent à résoudre. Nous établissons
de plus une manière de traduire les textes de preuve en programmes Beluga
traditionels, ce qui permet l’exécution de ces preuves. Les textes de preuve
et les programmes Beluga intéragissent facilement, donc l’utilisateur peut
choisir quel méthode de preuve lui convient le mieux.

Nous avons évalué Harpoon sur de nombreux exemples, en passant par
des théorèmes de préservation de typage et de progrès pour MiniML ainsi que
des théorèmes de normalisation tels que le récent défi POPLMark Reloaded.

Le code que nous avons écrit fait maintenant partie de Beluga sur Gi-
tHub à https://github.com/Beluga-lang/Beluga et le manuel de référence
est disposible à https://beluga-lang.readthedocs.io/.

https://github.com/Beluga-lang/Beluga
https://beluga-lang.readthedocs.io/
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Chapter 1

Introduction

Properties upheld by a formal system such as a logic or a programming lan-
guage are called its metatheory. Developing the metatheory of formal systems
such as logics and programming languages is central to establishing trust in
those systems. Such trust is essential since quite sophisticated programming
languages, having huge numbers of features, are used to create the vast bod-
ies of software that surround us in the modern world. For programmers to
have any hope of creating software free of bugs, they must rely on guaran-
tees made to them by the programming language they use. If that language
makes safety promises that turn out to be broken, then code believed be bug-
free may in fact contain bugs. Even worse, these bugs may lead to security
vulnerabilities in applications.

Sadly, as a programming language becomes more complex, so does its
metatheory. Developing a proof on paper, although an excellent strategy for
gaining an intuition for the proof’s correctness, does not provide bulletproof
assurance of its correctness. Instead, one can seek a higher standard of
correctness by mechanizing the metatheory. That is, one can verify a proof
using software called a proof assistant.

Alas, using a proof assistant is not as simple as one might hope. One must
first encode the system of study in the assistant. Next, one must formulate the
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statements of the theorems and their proofs in a way that the assistant can
automatically verify. How one goes about resolving both of these concerns
depends greatly on the chosen proof assistant.

Proof assistants come in many shapes and flavours, as building such an
assistant requires that one make several impactful choices. What underlying
theory will it use? How will a user interact with it? What sorts of proofs is it
specialized for, if any? When mechanizing metatheory, a key question is: how
to represent variables, (simultaneous) substitutions, assumptions, derivations
that depend on assumptions, and the proof state? These decisions greatly
influence how easy (or how cumbersome) it might be to encode various formal
systems and to reason about them.

Beluga [41, 39] is a proof assistant which provides sophisticated infras-
tructure for implementing formal systems based on the logical framework
LF [22]. This allows programmers to uniformly specify syntax, inference
rules, and derivation trees using higher-order abstract syntax (HOAS) and
relieves users from having to build custom support for managing variable
binding, renaming, and substitution.

Following the Curry-Howard correspondence, Beluga users develop induc-
tive metatheoretic proofs about formal systems by writing a total recursive
dependently typed program by pattern matching on derivation trees. Given
that the proof is represented as a program, proof checking amounts to type-
checking the program. Beluga hence follows in the foot steps of proof checkers
such as Automath [30], Agda [31], and specifically Twelf [35].

While writing a proof as a dependently typed program is a beautiful idea,
it can be quite challenging and cumbersome. In a dependently typed lan-
guage, the values of terms can influence the types of other terms. Keeping
track mentally of this rich type information is nothing short of a tall order.
This limits the widespread use of dependently typed programming languages
for mechanizing proofs in general. Hence, many proof assistants in this do-
main provide some form of interactivity: for example, Agda [31] supports
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leaving holes (question marks) and writing partial programs which can later
be refined using a fixed limited set of interactions. These holes crucially
allow the user to inspect the types of all in-scope identifiers, which relieves
them of the mental tax of dependent types. However a clear specification
and theoretical foundation of how these interactions transform programs is
largely missing. In Coq [4] users interactively develop a proof using tactics.
Behind the scenes, a sequence of tactic applications is elaborated into a de-
pendently typed program. Ideally, applying successfully a tactic to a proof
state should only result in a new valid, consistent proof state, but this isn’t
always the case: user-defined tactics for Coq constructed in the Ltac language
[13] are mostly unconstrained; it is Coq’s typechecker that verifies post hoc
that the program generated by the tactics is valid. The later Mtac system
[24] makes a marked improvement by introducing a static type system for
tactics. Although a tactic is guaranteed to produce a term of a known type
(if it terminates), the tactic type says nothing of the context in which the
generated term is meaningful. A common additional caveat of tactic lan-
guages, statically typed or otherwise, is that often, the resulting proof script
is brittle and unreadable.

This thesis presents the design and implementation of Harpoon, an
interactive proof environment built on top of Beluga, where programmers
develop proofs using a fixed set of tactics. The user invokes an action on a
subgoal in order to eliminate it, possibly introducing new subgoals in doing
so. Our fixed set of tactics is largely inspired by similar systems such as
Abella [17] and Coq, supporting introduction of assumptions, case-analysis,
and inductive reasoning, as well as both forward and backward reasoning
styles. As Harpoon is built on top of Beluga, a tactic can also refer to a
Beluga program to provide an explicit proof witness to justify a proof step.
The ability to seamlessly mix programming with command-driven interac-
tive theorem proving is particularly useful when appealing to a lemma and
switching between proving and programming. Finally, successful tactic appli-
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cation is guaranteed to transform a valid proof state into another valid proof
state. Harpoon’s command-driven front-end generates automatically as a
result a proof script that reflects the subgoal structure. We think of a proof
script as an intermediate proof representation language to facilitate transla-
tion to other formats, such as into (executable) Beluga programs as shown in
this thesis or perhaps eventually into a human-readable proof format. Our
specific contributions are the following:

• We present the design and implementation of Harpoon, an interactive
command-driven front-end of Beluga for mechanizing meta-theoretic
proofs. Starting from a user-specified theory (including both its syntax
and its judgments), users interactively develop metatheoretic proofs
using tactics. In tutorial style, we demonstrate Harpoon to interac-
tively develop a proof in Chap. 3 by way of giving a whirlwind tour of
the main supported tactics in Harpoon.

• In Chap. 4, we describe a logical foundation for interactive proof de-
velopment. To that end, we explain first in Sec. 4.2 a proof script
language that reflects the proof structure laid out by the user. This
language clearly separates forwards and backwards reasoning. Then,
we explain formally the interactive tactics and their connection to proof
scripts. We prove soundness of interactive proof construction, and give
a translation from proof scripts into Beluga programs, showing that
this translation is type-preserving. This justifies that proof scripts in-
deed represent proofs and form a valid way to develop metatheory, and
also allows proof scripts to not only be typechecked, but also executed
as programs.

• We characterize and reason about incomplete programs using contex-
tual types. A variable of such a type, which we call a subgoal variable,
represents a hole in the proof, i.e. a statement to prove together with
a set of available assumptions. Our formalism of incomplete proofs is
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such that holes are independent of each other and may be solved in
any order. We show that incremental proof development amounts to
successively applying contextual substitutions to eliminate a subgoal
variable, while possibly introducing new ones.

• Harpoon is implemented as part of Beluga and is documented to-
gether with Beluga at https://beluga-lang.readthedocs.io/. We have
used Harpoon for a range of representive examples from the Bel-
uga library, in particular type safety proofs for MiniML, normalization
proofs for the simply-typed lambda calculus [8], benchmarks for rea-
soning about binders [15, 16], and the recent POPLMark Reloaded
challenge [1]. These examples cover a wide range of aspects that arise
in the proof development such as complex reasoning with and about
contexts, context schemas, substitutions, and variables.
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Chapter 2

Background

Before presenting my work, I review in this chapter some of the foundations
upon which it rests. First, I broadly discuss tactic languages in Sec. 2.1
before moving on to languages used for defining tactics in Sec. 2.2. Next,
since Harpoon can be viewed also as a form of structured editor for proofs, I
survey the literature on structured editing in Sec. 2.3. Finally, I discuss the
Beluga project at large since Harpoon builds directly on Beluga.

2.1 Tactics and tacticals

2.1.1 Origins: the LCF system

Now a common word in today’s proof assistant jargon, the notion of tactic
as we know it was introduced by Robin Milner nearly 40 years ago as part of
the Logic for Computable Functions (LCF) system [28, 21]. This system is
specialized for reasoning in a logic called pplambda, a polymorphic predicate
lambda-calculus, based on Dana Scott’s Logic of Computable Functions [44].
Although the way we use tactics has evolved somewhat since then, the core
idea remains remarkably the same: a tactic is a function applied to a goal
to eliminate it, producing zero or more new goals. This view of tactics is
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natural if one understands an inference rule as a function from theorems
to theorems: a primitive tactic is merely the inverse of an inference rule,
mapping the conclusion of that rule to its necessary premises. As not every
tactic is applicable to every goal, Milner defines a tactic specifically as a
partial function. A tactic produces also as output a function that Milner
calls a validation. This function accepts a list of theorems – the eventual
solutions to the new goals generated by the tactic – and produces a new
theorem. This is due to the crucially backwards orientation of the tactics-
based approach: tactics act on a goal (a desired end state), so validations
are composed together once the proof is complete to form a forwards proof.

For example, a tactic representing the rule for ∧-introduction applied to
a goal of the form A ∧ B generates two subgoals, A and B. The validation
generated by the tactic expects a list of two theorems, one for A and one
for B, and constructs the theorem A∧B using the function representing the
∧-introduction rule, of type theorem→ theorem→ theorem.

The core tactics in LCF are simply the inference rules of pplambda, but
having only these would be quite limiting. Constructing even small proofs
would be a hugely laborious task in that case. To make the tactic-based ap-
proach to proving more practical, Milner introduces tactic combinators called
tacticals. These can take advantage of tactics’ failure for backtracking and
repetition. As an example of the former, the tactic t1 Orelse t2, constructed
using the Orelse tactical, executes t1 and if it fails, then t2. As an example
of the latter, consider the tactic Repeat t. It executes the tactic t: on failure,
nothing happens; on success, Repeat t is executed on every subgoal generated
by the successful application of t.

A strength of the LCF system is that users may define their own tactics,
but this comes also at a cost. Users must also therefore define the validation
associated to their tactic. Granting totally unrestricted power to the user
in constructing theorems would be a huge blow to any potential soundness
guarantee for the system. Instead, only limited power is given to the user,

12



as Milner says that “the only operations for generating [theorems] are the
basic inference rules ... and the rules derived from them.” But this isn’t
quite enough either. Nothing (statically) prevents a user from defining what
Milner calls an “invalid” tactic. He writes in [21],

Validity is clearly a necessary condition for a tactic to be useful;
indeed we may deny that invalid tactics are tactics at all. But
it is hard to see how to design a programming language so that
all definable objects of type tactic are valid, or how to gain this
effect by a type discipline. At most we can adopt a style which
encourages the programming of valid tactics; this can be done
with tacticals.

Milner shows on paper that given valid tactics, his predefined tacticals gen-
erate valid tactics. But to reiterate, the overall soundness of the system is
undermined by the user’s ability to define and use invalid tactics and tacti-
cals.

2.1.2 Tactics in Isabelle

In the early 80’s, Lawrence Paulson assists Milner in the development of the
LCF system in Edinburgh. Once Paulson’s time in Scotland ends, he travels
south to England, taking with him the insights from the LCF system to
create Cambridge LCF, which goes on to become the Isabelle-86 and later
the Isabelle-88 system [33].

Both Isabelle-88 and Edinburgh LCF use ML as a form of interactivity
with the user. That is, theorems can be proven interactively purely via the
ML read-eval-print loop (REPL). The main downside to this approach is
that anything is possible: this REPL allows general-purpose programming
in ML, of which one potential application is the development of proofs. In
other words, Isabelle-88 is an ML library rather than an application per se.
The functions representing tactics must be applied manually to values rep-
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resenting goals to build new goal values. These entities must all be managed
directly by the user.

To alleviate some of this manual labour, a helper library called the goal
stack package is bundled together with Isabelle-88 that automates much of
the goal management. It provides a notion of a current goal state, an undo
mechanism, and a helper for invoking a tactic on the current state. This
helper adds any new goals generated by the tactic to the goal stack.

Isabelle-88 builds substantially on Edinburgh LCF. First, whereas LCF is
specialized for reasoning about a particular logic called pplambda, Isabelle-
88 aims to be a generic theorem prover, capable of reasoning about several
logics that one would encode in it1. Second, as for the tactic languages, one
key development in Isabelle-88 is the removal of validations, those functions
used to construct a forwards proof once the tactic-based backwards proof is
complete. Recall that these validations are a source of concern in Edin-
burgh LCF as users can define invalid tactics, whose validations construct
a proof for the the wrong theorem. A shift in the representation technique
for inference rules is what enables explicit, manual validations to be elimi-
nated. Rather than represent inference rules as opaque functions, they are
represented directly as data in the system. From this representation, both
forwards reasoning functions as in LCF and backwards reasoning tactics can
be derived. Moreover, the application of a tactic automatically derived from
an inference rule performs the work of LCF’s validations behind the scenes
as what Paulson calls a “meta-inference”. Since a new object-logic is encoded
by extending Isabelle-88’s meta-logicM with additional axioms representing
as (meta-)implications the inference rules of the object-logic, reasoning in the
metalanguageM amounts to reasoning in the object-logic. In fact, an entire
intermediate proof state for a theorem in an object language is represented
as a theorem inM. Hence, it is by checking inferences inM that the system

1A similar drive to represent represent and reason about a broader class of logics also
takes place in Edinburgh, culminating with the development of the Edinburgh logical
framework LF [22].
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ensures that every proof state is arrived at correctly. Users may define new
tactics, but these, by virtue of ultimately using the primitive tactics rep-
resenting inference rules, effectively represent derived inference rules in the
object language.

Although the underlying details of tactics are quite different, the tactics
and tacticals themselves are mostly the same, and remain quite powerful.
Tacticals for repetition, backtracking, and so on are all present in Isabelle-
88. Paulson demonstrates the power of tacticals by using them to build a
proof search strategy for classical first-order logic. Paulson’s strategy is to
divide inference rules into two categories that he calls “safe” and “unsafe”.
A rule that can be applied eagerly, without affecting the provability of the
overall statement, is safe; else it is unsafe. Then, one applies as many safe
rules as possible until applying one unsafe rule, and repeating.

Now it seems that there are two different views of tactics. Some tactics
represent (derived) inference rules in the object-logic, whereas others repre-
sent proof search and automation techniques. It is not immediately clear
that these two views can be reconciled. Inference rules have clear conditions
under which they may apply, and their outcomes are predictable, whereas
proof search techniques have less clear applicability conditions and their out-
comes can be uncertain. These two different views were already present in
LCF, and we will see that these two views appear in later systems, too.

2.1.3 Tactics in NuPRL

While Europe is certainly abuzz with research into proof assistants, so is Cor-
nell University in New York. There, Robert Constable and his collaborators
develop the NuPRL system [11]. The tactics and surface-level architecture
of NuPRL resemble Isabelle-88’s: the system is implemented in ML, and tac-
tics are created by writing them in ML. Again as in Isabelle, the tactics are
safe in the sense that invalid proofs cannot be produced by a tactic, so they
similarly do not suffer from that shortcoming of the original LCF tactics.
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The distinguishing feature of NuPRL is that it is an extensional type
system, unlike Isabelle-88 discussed above and Coq discussed below. That
is, NuPRL admits a typing rule called equality reflection, by which propo-
sitional equality is included within definitional equality. The upshot is that
definitional equality is undecidable, so there is no proper typechecking al-
gorithm for NuPRL. Instead, the user presents a type to the system and
interactively constructs a derivation of that type using tactics.

One of NuPRL’s uses is formalized mathematics, in which the proof term
that witnesses the theorem is often irrelevant. In that case, the user instructs
the system to begin a proof for the statement A that is the encoded form of
the theorem they wish to prove. The use of the tactics generates behind the
scenes the proof term a and the explicit typing derivation witnessing that a
has type A.

In contrast, another of NuPRL’s uses is to verify algorithms. This pro-
ceeds in two steps. First, one implements the algorithm a in a familiar
ML-like programming language. Second, one instructs the system to begin
a proof of a ∈ A, where A is a type that encodes the correctness guarantees
to be established about a. (For example, one might want to show that a list
sorting algorithm’s output is an ordered permutation of its input; the type
A would encode this property.)

In sum, although undecidability of typechecking appears to be a blow to
the system’s ergonomics, it does also provide a benefit: the algorithms one
designs must be cleanly separated from the proofs about those algorithms.
Moreover, in the common case of establishing theorems whose proof terms
one doesn’t care about, one can simply concentrate on the formulas being
manipulated without regard for the proof term. Let the tactics take care of
the tedious work of constructing the proof term and its typing derivation!
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2.2 Languages for defining tactics

NuPRL, Isabelle-88, and LCF do not have proper languages for defining tac-
tics. Instead, one defines tactics essentially by extending the proof assistant
itself. This works reasonably well in those settings because the assistant is
interpreted, and we can think of the assistant not as an application itself,
but rather as a library implemented in ML. The upshot is that one can use
the ML REPL to develop proofs interactively.

When a proof assistant is its own, separate application, then the devel-
opment of new tactics cannot reasonably proceed by extending the assistant
itself. Therefore, we see a drive to design languages for defining the new
tactics.

2.2.1 Tactic languages for Coq

In the mid-80s, as LCF and Isabelle are developed in Scotland and England,
Thierry Coquand and Gérard Huet develop the Calculus of Constructions
in France [12]. This is a higher-order constructive logic possessing all forms
of quantification (in the sense of Barendregt’s lambda cube [3]). Further-
more, they developed an implementation of this logic, called Coq2. What
distinguishes Coq from LCF and Isabelle is that it is designed with program
extraction in mind. This technique recovers from a proof object its computa-
tional component as an executable program in a conventional programming
language, e.g. ML.

As a highly simplified but concrete example, consider a formula of the
form ∀x:τ1.∃y:τ2.P . In constructive logic, existential claims actually contain
an object that witnesses the claimed existence. Then it seems possible to
transform this logical statement into a program that, given an x:τ1, computes
the y:τ2 that witnesses the claim. That is, one can recover an ordinary

2The system was itself called CoC and then constr for several years before being
renamed, but I will refer to it only as Coq for simplicity.
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function of type τ1 → τ2.
This extraction process enables the development of verified algorithms.

First, one uses the system to prove a theorem, e.g. “for any list l, there
exists a list l′ such that l′ contains exactly the elements of l and such that l′’s
elements are in ascending order”. Then, one uses program extraction to ob-
tain from this theorem a proper sorting algorithm together with a guarantee
of this algorithm’s correctness.

Similar to LCF and Isabelle, Coq features a number of tactics and tac-
ticals to aid in proof development. The original tactics are much like LCF’s
and Isabelle’s, so I will not describe them. An important difference, how-
ever, between Coq and the other systems I have described, is that Coq is
a proper application written in ML3, with its own syntax, parser, etc. In
other words, users do not interact with Coq via the ML REPL. This has two
unfortunate downsides for the extensibility of Coq’s tactic language. First, it
is challenging to add new tactics to Coq, as one must obtain the source code
for Coq, implement the new tactics in ML, and recompile the system as a
whole. Second, the distribution of custom tactics is difficult: should one ask
that one’s domain-specific tactic be included in the core system, or should
one circulate a patch file to be applied to the system’s source tree? Neither of
these distribution strategies is particularly satisfying. Domain specific tactics
should probably not be included in the core distribution of the system, else
users eventually find themselves drowning in an abundance of highly special-
ized tactics unnecessary to their specific problem domain. The circulation of
patches, on the other hand, requires that one keep their patches constantly
up to date with the current distributed version of the system.

At last, a solution appears at the turn of the millenium as David Dela-
haye announces the Ltac language [13]. Ltac is a domain-specific language
embedded within Coq for defining new tactics. Essentially, scripts in Ltac

3Coq has been implemented in many different ML languages over the years, first in
CAML, then in Caml-light, and finally (and still to this day) in OCaml. To simplify, I
will say that Coq is merely implemented in ML.
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are interpreted to execute commands in Coq’s kernel. The benefits of Ltac
are that it is high-level compared to implementing tactics directly in ML and
that new tactics can be defined alongside proofs. In fact, Delahaye reports
significant code size reductions (and even sometimes speedups!) in tactics
ported from ML to Ltac. Since custom tactics can be defined together with
one’s proofs, tactic and even proof distribution are vastly simplified. Indeed,
Pierre Pédrot later writes in [43], “the Ltac tactic language is probably one
of the major ingredients of the success of [Coq], as it allows to write proofs
in an incremental, more efficient and more robust way that the state of the
art at that time.”

To illustrate one particularly high-level construct from Ltac called match
goal, let us consider an example from Delahaye’s paper, in which he proves
that the natural numbers have more than two elements. This statement can
be expressed formally as

¬(∃x:N.∃y:N.∀z:N. x = z ∨ y = z)

The proof stategy is to assume the negated formula and arrive at a contra-
diction. The assumed existential claim can be decomposed, assuming the
existence of such an x and such a y. Then, it suffices to instantiate the as-
sumption ∀z:N.x = z ∨ y = z with three distinct numbers, say 1, 2, and 3.
At this point, we have three relevant assumptions: H1 :: x = 1 ∨ y = 1,
H2 :: x = 2 ∨ y = 2, and H3 :: x = 3 ∨ y = 3. Successively eliminating
these assumptions can be accomplished quite easily with the ; (semicolon)
tactical, which applies the tactic on the right to each subgoal generated by
the tactic on the left: elim H1; elim H2; elim H3. In detail, the first
elimination generates two subgoals, and for each of these, the second elim-
ination generates two subgoals, and for each of those, the third elimination
generates two subgoals. This exponential blowup results in eight subgoals,
each of which contains a pair of assumptions of the form x = a and x = b,
or y = a and y = b for distinct constants a, b.
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Lemma nat_card : ¬(∃ x:nat, ∃ y:nat, ∀ z:nat, x = z ∨ y = z).
Proof.

intros A; elim A. intros x H; elim H. intros y J.
specialize (J 0) as H1. specialize (J 1) as H2. specialize (J 2) as H3.
elim H1; elim H2; elim H3; intros;
match goal with
| [ _ : ?x = ?a, H : ?x = ?b |− _ ] ⇒

subst x; discriminate H
end.

Qed.

Figure 2.1: A simple theorem on the cardinality of natural numbers, to
illustrate the match goal construct in Ltac.

Ltac’s match goal construct is a form of pattern matching for extracting
parts of the active subgoal. One can match on available assumptions as well
as on the current goal. The pattern Delahaye uses is [_ : ?x = ?a, H
: ?x = ?b |- _]. The turnstile separates the hypothesis pattern from the
goal pattern. The question mark syntax expresses metavariables, and the
nonlinear appearance of ?x will involve unification during matching. This
pattern can match all eight of the subgoals that we have generated, as each
of them contain (at least) the assumptions of the written forms. Then, in the
body of this branch, we eliminate the first equality using subst x, refining
the type of H to evidently be uninhabited, as it states an equality between two
syntactically unequal, closed terms. Then we eliminate the absurd assump-
tion H using the discriminate tactic to produce the required contradiction.
Since we want to perform this general analysis on all eight subgoals, we se-
quentially compose the match goal construct with the eliminations using ;.
See Fig. 2.1 for the full example.

The beauty of Ltac is that this basic recipe could be further generalized
to prove that the natural numbers have more than n elements for a closed
n. First eliminate the n nested existentials. Second, eliminate the universal
n + 1 times, with distinct naturals, e.g. 0 through n. Finally, end the proof

20



in the same way, using match goal to find a pair of equalities that can be
used to produce a contradiction.

The main downside to Ltac is that it is ill-specified. Indeed, Delahaye does
not give any semantics for tactics defined in Ltac, and upon Ltac’s release, it
was not statically typed. The lack of a typing discipline would not, however,
be a dealbreaker, given that Ltac runs during typechecking anyway: any
runtime error during execution of an Ltac script becomes a type error at its
invocation site. Overall, the lack of specification is acceptable at the time
of Ltac’s release as the language eliminates a growing problem with custom
tactics by allowing users to define simple custom tactics while encouraging
them to implement larger, more sophisticated ones in ML.

Alas, it is all too common for domain-specific languages to outgrow their
original scope, and Ltac is no exception. Over the following two decades, sev-
eral other approaches to programming tactics in Coq are proposed: Mtac [53]
/ Mtac2 [24], Rtac [25], Template-Coq [2] / MetaCoq [46], and Ltac2 [43] to
name a few. I briefly discuss each of these lines of work.

Mtac / Mtac2

The Mtac project broadly aims to give a static type system to tactics, encap-
sulating the effects that tactics wish to use inside a monad. Thus, a tactic
of type M A is guaranteed to produce a term of type A if it terminates, and
it may use effects from the monad M. The constructors for this type family M
include the usual monadic operations, together with many useful combina-
tors for tactic programming, e.g. fixed points, exception handling, pattern
matching, and more. The primitive tactic execution construct run t has
type A assuming that t has type M A. This primitive is eliminated during
the type inference stage, so the trusted Coq kernel does not need to be ex-
tended to handle run4. Like in Ltac, an Mtac program is “untrusted” in the

4This is a common theme in Coq: earlier typechecking stages are often extended in
order to keep the trusted kernel as simple as possible.
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sense that it must be executed to generate a term and that term must be
typechecked. The downside to this is that very large proof terms could be
generated by seemingly simple tactics (as a result of proof search), which
negatively impacts the performance of typechecking.

Rtac

The Rtac project [25] of Gregory Malecha et al. seeks to address perfor-
mance issues with Ltac and belongs to a family of approaches called reflec-
tive metaprogramming. Such an approach provides primitives for quoting
and unquoting terms from the proof assistant itself: a Coq term is reified
(quoted) into a value of a concrete Coq datatype, transformed according to
the implementation of the tactic, and then reflected (unquoted) back.

Rtac distinguishes itself from other reflective metaprogramming tech-
niques (e.g. in Agda [50] or in Template-Coq) by allowing the user to define
a custom concrete syntax that is the target of reification. Hence, a tactic
needs only to consider the cases for that syntax instead of the syntax for the
entire assistant.

Rtac’s main motivation is not ease-of-use or safety, but actually perfor-
mance. To use an example from [25], consider the problem of checking equal-
ity in a commutative monoid, e.g. checking that x⊕2⊕3⊕4 = 4⊕3⊕2⊕x.
One could write an Ltac program prove this directly, using transitivity of
equality to witness a series of permutations of elements on the left until they
match those on the right. Such an Ltac program is not particularly hard to
write, but the generated proof following this strategy is generally quadratic
in the size of the input. A more clever proof would flatten these expressions
into lists and check that one is a permutation of the other. Malecha describes
this technique in detail in [25] using Rtac, and the resulting proof is linear in
the input size. On large enough input sizes (8 elements in the commutative
monoid equivalence example), these improved asymptotics outweigh the cost
of reification and reflection.
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Alas, there are some additional requirements to make this approach work:
the user must prove a soundness lemma for their tactic. This lemma expresses
that if the tactic decides that the two reified terms are syntactically equal,
then their reflections are also equal. Malecha addresses this concern by pro-
viding a number of tacticals such that tactics built using them can have their
soundness lemmas automatically derived. However, more sophisticated tac-
tics that cannot be built out of the provided tacticals will require soundness
lemmas to be proven manually. Further limitations of the Rtac system is that
its internal language is simply-typed, so Rtac cannot reify dependently-typed
terms.

Template-Coq / MetaCoq

The recent MetaCoq [46] project is quite large, having several goals. Among
them are reification and reflection of terms as well as a monadic interpreter
for scripting tactics. (Its goals less relevant to us, but nonetheless quite im-
pressive, include a full specification of Coq’s typing and operational seman-
tics as well as a correctness proof of a functional typechecker for Coq.) To
achieve these goals, MetaCoq combines ideas from the Mtac2 and Template-
Coq projects: it keeps Mtac’s idea of using a monad to capture effects that
tactics need (such as nontermination, backtracking, state, etc.) but it re-
places Mtac’s shallow embedding of Coq terms with Template-Coq’s deep
embedding.

In more detail, MetaCoq’s TemplateMonad is defined as a free monad in
Coq. This is essentially a syntactic device that happens to be a monad, but
must later be interpreted to have any effect. The interpretation is defined
in OCaml as a Coq plugin. The free monad definition includes functions for
quoting various constructs in Coq, such as terms, inductive types, universes,
and constants.

The concrete syntax into which terms are reified is a simple type term
and nothing prevents a MetaCoq program from manipulating these in ways

23



that violate scoping, let alone typing. This is in fact intended by the authors,
as the alternative (as developed in Agda [50]) is to use sophisticated concepts
such as inductive-recursive (IR) and quotient inductive-inductive types (QI-
ITs) to obtain an intrinsically-typed representation of the syntax. Significant
extensions to Coq’s metatheory would be required to accommodate IR and
QIITs.

Given that MetaCoq’s concrete representation of terms is untyped, there
are two forms of unquoting available: tmUnquote t and tmUnquoteTyped A
t. Both of these infer some type for the unquoted term. In the former, the
inferred type is existentially quantified, so there is no way to know the type5.
In the latter, one specifies an expected type A to tmUnquoteTyped and the
system requires that the inferred type for t unify with A. Recall that all of
these operations take place within TemplateMonad, so any type inference
failure (or unification failure in tmUnquoteTyped) will cause an exception in
the monad.

Although Ltac and Mtac programs can generate only terms, Template-
Coq and by extension MetaCoq are capable of generating full toplevel defini-
tions, as in Template Haskell [45]. This makes it possible to do such things as
defining new inductive types and to generically generate lemmas by inspect-
ing the shapes of inductive types. The authors do not discuss at length how
one defines new tactics using MetaCoq, since this is not their primary aim.
They claim, however, that MetaCoq can act as a foundation for eventually
building domain-specific tactic languages in the style of Ltac and Mtac.

Ltac2

All competitors to Ltac surveyed so far offer a brand new approach entirely,
namely by using an explicit monad or reflection (or both in the case of Meta-
Coq). For a traditional Ltac user, it can be challenging to adopt these
techniques since they differ quite a lot from Ltac. The Ltac2 project [43]

5Since pattern matching on types is forbidden.
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addresses this by explicitly aiming to resemble Ltac, maintaining a strong
degree of backwards compatibility.

Although it resembles Ltac on the surface, Ltac2 is a proper ML language.
It is “call-by-value and effectful, supports algebraic datatypes and allows
prenex polymorphism”. The ability to define datatypes in Ltac2 is a huge
improvement, as it allows writing tactics that use data structures such as
lists and dictionaries. Like Ltac, Ltac2 uses runtime checks to ensure that
generated terms are well-typed.

Ltac2 features a macro system of “notations” together with a metapro-
gramming system of quotations and antiquotations for Coq terms. This is
similar to the notation system in Ltac, so it should be familiar to users. The
key difference is that each notation is associated with a scope, which is a
function that expands syntax on the fly. The notion of scope is made higher-
order by introducing scope combinators. For example, the ident scope for
parsing identifiers can easily be made into a scope for parsing a list of identi-
fiers using the list0 scope transformer. This leverages the existence of data
structures, generating a list of identifiers.

2.2.2 VeriML

Although the Coq ecosystem sees a lot of development regarding tactic lan-
guages, some have thought to distance themselves from the Calculus of Con-
structions to bring new insights. VeriML [47, 48] is an ML-like language for
developing proof automation. It is very expressive, having references and
general recursion.

A key idea in this system is to clearly separate the logical language
λHOLind from the computation language: propositions and proofs are explic-
itly embedded into the computation language using an angle-bracket syntax
〈·〉. VeriML features a form of dependent types in which objects represent-
ing proofs are indexed by the proposition they prove. Furthermore, follow-
ing [29, 40], logical terms come packaged with the context in which they
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are meaningful. Abstraction over contexts is also possible, to express that a
function can work in any context.

The language λHOLind is a higher-order logic augmented with inductive
types and the ability to define total recursive functions. It can be seen
as a common core between the Calculus of Inductive Constructions6 [34]
(CIC) and systems in the HOL family such as Isabelle. Rather than use
a pattern matching construct, which is quite complex in the presence of
dependent types (see [20]), λHOLind uses eliminators. That is, when one
defines a new inductive type, the system synthesizes a special constant called
an eliminator for that type. The eliminator represents the induction principle
for the type. This is essentially a function from the newly defined type into
some other type family of one’s choosing, sometimes called a motive [27]. To
use the eliminator, one must also provide a number of methods: given that
an inductive type is a sum of products, each method handles one branch
of the sum. Recursive occurrences of the inductive type within a branch
become replaced by the motive. From a proof-theoretic point of view, these
replacements correspond to the induction hypotheses. As a concrete example,
consider the type N of natural numbers. The natural eliminator one obtains
for N is

elimN : P z→ (Πn:N. P n→ P (s n))→ Πn:N. P n

where the motive P is a type family indexed by N.
The benefit of using eliminators over the more familiar pattern matching

and explicit recursion is that eliminators greatly simplify totality checking.
In fact, the type of the eliminator itself is constructed so that totality is
guaranteed. The downside to eliminators is that the selection of a motive
can be quite tricky, making programming using eliminators quite challenging.

The computation language of VeriML manipulates contextual λHOLind
terms. These terms are λHOLind terms together with a context in which
they are meaningful: a contextual term [φ]t may mention in t free variables

6This is the Calculus of Constructions augmented with inductive families [14].
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that are listed in the context φ. Although λHOLind uses eliminators to define
total functions, the computation language of VeriML uses the usual pattern
matching and explicit recursion of functional programming. The need to use
eliminators to simplify totality checking is unnecessary in the computation
language as this language admits and embraces nontermination. The con-
struct holcase T of · · · is used to perform dependent pattern matching on
the contextual λHOLind term T . Given that this matching is dependent, the
branches may have different types, according to the refinement generated by
matching the term T against the pattern of the branch.

The expressivity of VeriML makes it possible to define sophisticated de-
cision procedures and proof automation without worrying about termination
and by using powerful imperative data structures. In [47], the author uses
these features to implement for example a decision procedure for the theory
of equality with uninterpreted functions (EUF). This theory is generated by
the usual axioms of equality (reflexivity, symmetry, and transitivity) together
with the rule x = y =⇒ f x = f y. The functions f are uninterpreted in
the sense that they do not have any associated reduction behaviour, unlike
e.g. in the theory of arithmetic where the function + has such a behaviour.
A problem in EUF asks whether a given equation is true in a context of as-
sumed equations. The standard technique for deciding this theory is to use
a union-find data structure to find equivalence classes of terms according to
the assumed equations. Then it suffices to check whether the two terms of
interest belong to the same equivalence class. Although persistent implemen-
tations of the union-find data structure have been developed (see [10]), the
traditional implementation is imperative. The imperative features of VeriML
make it easy to port this implementation straight from standard algorithms
textbooks.
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2.3 Structured editing

Although Harpoon uses a tactic language for interfacing with the user, these
tactics are not really of primary interest, since they are not recorded. In-
stead, applying a tactic elaborates a (partial) structured proof script, which
is recorded to a file. Therefore, we can see Harpoon as a high-level editor for
proof scripts. An editor aware of the structure of the document being edited
is called a structured editor7.

Usually, editing source code means writing text which is then parsed
according to the grammar of the language being written. Nothing prevents
writing text that is unmeaningful: one can easily write in Emacs some text
that does not parse. In a structured editor, edit actions are restricted so
they respect the grammar of the language, making it impossible to construct
syntactically incorrect programs. These editors have a notion of “hole”, which
stands for a node in the abstract syntax tree (AST) that remains to be
constructed by the user.

Perhaps the biggest success of structured editors today is in teaching
programming to children: the Scratch language [26], designed to be user-
friendly and using a GUI for editing, is a syntactic structure editor. The
benefit in an educational setting is that learners can focus immediately on
computational thinking, bypassing any struggle with program syntax.

Another advantage of structured editors is that they can more easily pro-
vide editing services such as syntax highlighting, type-aware code completion,
and automated refactoring. These operations require that the program be-
ing analyzed or transformed be syntactically or semantically meaningful, so
traditional editors must selectively disable them or employ ad hoc heuristics
when a malformed program is encountered. This is a nonissue in a structured
editor, which needs not even concern itself with malformed program text.

However, some editing services require not only syntactically meaningful
7Other names include structural editor, syntax-directed editor, and projectional editor.
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programs, but also semantically meaningful programs. The Hazelnut sys-
tem [32] gives a theoretical foundation for a structured editor in which every
edit state is semantically meaningful. That is, every edit state is well-typed.

The challenge in this development is to preserve some degree of user-
friendliness: naively enforcing typing would require the user to construct
programs in a very rigid, outside-in form. For instance, the user would have
to identify that they wish to construct a function application before they
identify the function they wish to apply! Even worse, in a functional language
encouraging currying, due to left-associativity, the programmer would have
to construct the appropriate number of application nodes before specifying
the function to call!

The solution to this is one of Hazelnut’s key innovations: a hole in a
program may be nonempty. In this case, the hole is understood not as a
mere missing AST node, but as an internalized type mismatch. The content
of the hole must internally be well-typed, but crucially it can have any type.

For example, consider a hole of type B. We wish to fill it with a function
application f a for some f : A→ B and a : A. We first construct a reference
to the function f . This is ill-typed: the expected type is B but the inferred
type of f is A→ B. Thus the variable f is placed inside the hole, witnessing
the type mismatch. Then, inside the hole we construct the application node,
placing the variable f as the left child and specify the argument a as the
right child. The type of the expression inside the hole is now B, matching
the expected type outside the hole, so the hole vanishes, becoming replaced
by its contents.

To properly separate the notions of inferred and expected type, Hazel-
nut is presented as a bidirectional type system. Both empty holes LM and
nonempty holes LeM are classified as synthesizable expressions. A nonempty
hole’s body e must synthesize some type τ , so the hole must be internally
well-typed, but both an empty and a nonempty hole synthesize the hole type
LM. Note that although expression holes may be nonempty, type holes may
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not be nonempty8.
In a traditional bidirectional type system, the rule for switching from the

checking mode to the synthesis mode has the additional premise that the
synthesized type be convertible (or made convertible via unification) with
the type being checked against. In Hazelnut, the notion of type equality
used in this situation is called type consistency, and crucially it accounts for
the hole type LM being “equal” to any other type. As for checking against
the hole type, additional consideration is necessary. Consider the situation
Γ ` λx. e ⇐= LM. The hole type LM is made to expand into LM → LM so
that the context is extended with the declaration x:LM and the body of the
lambda is further checked against LM. Extending the system with additional
type formers (e.g. product types or sum types) requires corresponding new
judgments to handle such hole type expansions.

Hazelnut’s metatheory is rich and interesting: not only are the traditional
progress and preservation theorems proven, but also the authors show several
results concerning the interactive nature of their system, which they call a
structured editor calculus. Recall that Hazelnut has a notion of cursor that
is superimposed onto expressions. The programmer manipulates the cursor
and constructs AST nodes using interactive commands called actions. Here
is a summary of the main results concerning actions. All this metatheory is
mechanized in Agda.

• The program is invariant under movement actions, i.e. movement ac-
tions affect only the cursor.

• From any cursor position, a sequence of movement actions exists to
bring the cursor to any other position.

• For any well-typed expression, there exists a sequence of actions to
construct it interactively.

8One might imagine that they can be nonempty in a potential extension of this system
to dependent types.
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• Any expression constructed interactively is well-typed.

Hazelnut’s edit actions bear a resemblance to tactics. A key difference is
that in tactic-based systems, the cursor is less explicit and can be focused
only on a subgoal, whereas in Hazelnut the cursor can be moved around
anywhere in the expression. Hazelnut’s edit actions include also a command
for deleting a node, replacing it with a subgoal. This is more general than a
mere undo mechanism as it appears in tactic-based systems.

The notion of nonempty holes in Hazelnut gives a uniform way to handle
backwards reasoning. This distinguishes Hazelnut from traditional tactic-
based systems, which employ special tactics for backwards reasoning. How-
ever, any backwards reasoning performed in a nonempty hole is obscured in
the final expression: by merely seeing a function application, for example,
one cannot know whether it was constructed in a forwards or backwards
style.

2.4 Beluga

Harpoon is an interactive frontend for Beluga [6]. One develops a proof inter-
actively using Harpoon, and this proof can either remain as a proof script,
or it can be translated into a Beluga program. It is this translation that
justifies our claim that a Harpoon proof script truly does represent a proof.
Considering this, it is essential to first describe Beluga. The main techni-
cal exposition of Beluga is given in Sec. 4.1 before we describe Harpoon’s
metatheory, so this section focuses on a high-level overview of Beluga.

2.4.1 Contextual Modal Type Theory

Beluga is based on Contextual Modal Type Theory (CMTT) [29]. Although
Beluga is dependently-typed, I discuss here the simply-typed Contextual
Modal Type Theory so we can concentrate solely on the contextual ideas.
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This theory can be obtained from simple type theory by internalizing the
notion of context. First, the syntax of types is extended to include the form
[Ψ]A, called a boxed type. A term of this type represents a hypothetical
derivation depending on the context Ψ and concluding A. Second, the typing
judgment ∆; Γ ` t : A mentions two contexts: Γ contains ordinary assump-
tions whereas ∆ contains contextual assumptions. A contextual assumption
has the form u : A[Ψ] in which the contextual variable u expresses that A
is true in the context Ψ. Contextual variables are also called metavariables.
One must take care to distinguish an ordinary assumption of a boxed type
x : [Ψ]A from a contextual assumption u : A[Ψ]. The introduction and
elimination rules for boxed types are the following.

∆; Ψ `M : A
∆; Γ ` box(Ψ. M) : [Ψ]A

∆; Γ `M : [Ψ]A ∆, u:A[Ψ]; Γ ` N : C
∆; Γ ` letbox(M,u. N) : C

In the introduction rule, M is a hypothetical derivation concluding A and
depending on the assumptions Ψ. In the elimination rule, we wish to prove
C using the hypothetical derivation M depending on Ψ. The context ∆
becomes extended with a new contextual variable, and we conduct the proof
N of C in this extended context. In other words, rather than demand upfront
that the assumptions Ψ be instantiated with some terms, this is delayed
until the moment that the contextual variable is used. To use a contextual
variable, one provides an explicit substitution that maps the context of that
assumption into the current context.

∆, u:A[Ψ]; Γ ` σ : Ψ
∆, u:A[Ψ]; Γ ` clo(u, σ) : A

2.4.2 Contextual types in Beluga

Now let us see how these ideas scale up to dependent types and are applied
in Beluga. In the presentation of CMTT above, the system is homogeneous

32



in the sense that the language of terms inside a box is the same as the
language of terms outside a box. In principle this means one can nest boxes
arbitrarily deep. Beluga, in contrast, limits this nesting to one level, given
that the language inside a box differs from the language one writes outside
a box. Inside a box, one uses LF [22] to uniformly represent the syntax and
the derivations of an encoded language. In general, the language used inside
a box is called an index language and it could be natural numbers, strings, or
lists [9, 52], but given Beluga’s focus on mechanized metatheory, LF is a good
choice as it gives concise and elegant representations of binding structures.
(We discuss concretely in Chap. 3 how to encode a language in Beluga, using
the simply-typed lambda calculus as an example.)

Beluga goes slightly beyond pure contextual LF for its index language,
by allowing quantification over contexts. These quantifiers bind context
variables. Context variables in particular are key to expressing even basic
metatheorems about formal systems. For example, consider the type unique-
ness theorem for the simply-typed lambda calculus (in which the parameter
of an abstraction is equipped with a type annotation).

If Γ `M : A and Γ `M : B, then A = B.

This theorem cannot be proven without somehow generalizing over contexts,
as the case for abstractions M = λx:A. M ′ requires extending Γ with an
additional declaration to use the induction hypothesis. We state this theo-
rem as the following type in Beluga, using the function space → to model
implications as is often the case in proof assistants based on type theory.
unique : (g:ctx) [g ` oftype M A[]] → [g ` oftype M B[]] → [` eq A B]

Whereas terms are classified by types, contexts are classified by schemas.
In the above function type, the syntax (g : ctx) binds a context variable g

with the schema ctx. Note that this schema is not built in to Beluga: one
must separately define it, specifying the form of the declarations it is allowed
to contain. In this example, we would define ctx as containing declarations
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that associate a variable to a type. This represents another departure from
basic CMTT, in which the internalized contexts are precisely the contexts of
CMTT itself. Since Beluga aims to model various formal systems and since
the notion of context can vary from system to system, Beluga must therefore
also support modelling these contexts.

What Beluga retains from CMTT, however, is the notion of metavariable.
Consider again the type of unique and observe that the variables M, A, and B

are free. Beluga automatically abstracts over these and infers their type by
a process called type reconstruction. The internal type generated by type
reconstruction is
(g:ctx) (M : (g ` tm)) (A : (` tp)) (B : (` tp))
[g ` oftype M A[]] → [g ` oftype M B[]] → [` eq A B]

where we use ( ) to express an implicit Pi-type 9. As in CMTT, to use a
metavariable, we must associate it with an explicit substitution to mediate
between its context and the context at the use site. This is seen explicitly in
[g ` oftype M A[]], where the explicit weakening substitution [] is associated
to A. On the other hand, no substitution seems to be associated to M: as a
programming convenience, omitting a substitution is syntactic sugar for the
identity substitution, [..]. Notice that since metavariables in Beluga stand
for contextual LF terms, they can appear only within boxes, whereas in
CMTT, being homogeneous, they can appear anywhere provided that an
appropriate substitution is given.

2.4.3 Programming with contextual types

Now let us shift our focus to Beluga’s programming language, in which one
manipulates these contextual objects. Beluga is a dependently-typed func-
tional programming language. Beluga’s form of dependent types differs from
that in languages such as Coq or Agda. One can quantify over any type
in those systems, whereas in Beluga quantification is over contextual types,

9A Pi-type is the type-theoretic analogue of a universal quantifier.
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as we have seen in the reconstructed type of unique. Following the Curry-
Howard correspondence, a proof is represented as a total recursive function
understood as mapping the premises of a theorem to its conclusion. These
total functions are written by using (dependent) pattern matching on boxed
objects, representing derivations.

Dependent pattern matching has two essential components in Beluga.
First, the type of the pattern is unified with the type of the scrutinee. Second,
in the case of matching on a contextual object, the pattern itself is unified
with the scrutinee. These unifications produce a refinement substitution θ,
one for each branch. This susbtitution refines the types of other assumptions
as well as the goal type: if the case expression as a whole is to be a term of
type τ , then the ith branch is to have type [θi]τ .

To illustrate the effect of dependent pattern matching, consider again
the type of unique. Now suppose we perform a case analysis on the
metavariable M : (g ` tm) and suppose further that we have the assumptions
d1 : [g ` oft M A[]] and d2 : [g ` oft M B[]]. One branch of this case anal-
ysis is for M = app M1 M2, so the refinement substitution in that branch is θ =
app M1 M2 / M. This means that in the branch, the types of the assumptions
d1 and d2 have changed: e.g. d1 : [g ` oft (app M1 M2) B[]].

Given that Beluga uses recursion and pattern matching rather than elim-
inators, the totality checking puzzle is more complicated. First, all case
expressions must be covering. This is ensured by a coverage analysis [38].
Second, all recursive calls must be well-founded. To ensure this, each func-
tion must be annotated with an induction order. The simplest such order
specifies that induction is on a specific premise. Then, when splitting on
that premise using pattern matching, each subterm in a pattern is used to
generate an induction hypothesis. The full list of these induction hypotheses
is carried around during typechecking, so when a recursive call is encoun-
tered in the program, it suffices to check that it is among the list of available
induction hypotheses.
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We end the discussion of Beluga for now, returning with a more detailed
and technical description in Sec. 4.1. In the next chapter, we see how to
encode a language in Beluga and how to use Harpoon to prove properties
about it.
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Chapter 3

Proof Development in Harpoon

We introduce the main features of Harpoon by considering two lemmas
that play a central role in proof of weak normalization of the simply-typed
lambda calculus. First, the Termination Property states that if well-typed
term M’ halts and M reduces to M’, then M’ halts. Second, the Backwards
Closed Property states that if a well-typed term M’ is reducible and M reduces
to M’, then M is also reducible.

3.1 Initial setup: encoding the language

We begin by defining the simply-typed lambda-calculus in the logical frame-
work LF [22] using an intrinsically typed encoding. In typical HOAS style,
lambda abstraction takes an LF function representing the abstraction of a
term over a variable. There is no case for variables, as they are treated im-
plicitly. Given that LF does not have case analysis or recursion, its function
space is a weak, representational one: only genuine lambda terms can be
represented.

LF tp : type =
| unit: tp
| arr : tp → tp → tp;

LF tm : tp → type =
| lam : (tm T1 → tm T2) → tm (arr T1 T2)
| app : tm (arr T1 T2) → tm T1 → tm T2;
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Free variables such as T1 and T2 are implicity universally quantified (see
[37]) and programmers subsequently do not supply arguments for implicitly
quantified parameters when using a constructor.

With the syntax out of the way, we define a small-step operational se-
mantics for the language. For simplicity, we use a call-by-name reduction
strategy and do not reduce under lambda-abstractions.

LF step : tm T → tm T → type =
| s_app : step M M’ →

step (app M N) (app M’ N)
| s_beta : step (app (lam M) N) (M N);

LF steps : tm T → tm T → type =
| next : step M M’ → steps M’ N →

steps M N
| refl : steps M M;

Notice in particular that we use LF application to encode the object-level
substitution in the s_beta rule. We define a predicate val: tm T → type on
well-typed terms expressing what it means to be a value: v_lam: val (lam M).
Last, we define a notion of termination: a term halts if it reduces to a value.
This is captured by the constructor halts/m.

LF halts : tm T → type = halts/m : val V → steps M V → halts M;

3.2 Termination Property: tactics intros,
split, unbox, and solve

As the first short lemma, we show the Termination Property, that if M’ is
known to halt and steps M M’, then M also halts. We start our interactive
proof session by loading the signature and defining the name of the theorem
and the statement that we want to prove.

Name of theorem (empty name to finish): halts_step
Statement of theorem: [ ` step M M’] → [ ` halts M’] → [ ` halts M]

Beluga is a proof environment in which an encoded theory is clearly sep-
arated from its metatheory. LF objects encoding the syntax or judgments
from a theory are embedded within Beluga using the “box” syntax [ ` ].
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Furthermore, we embed such LF objects together with the LF context in
which they are meaningful [36, 40, 29]. We call such an object paired with
its context a contextual object. In this example, the LF context, written on
the left of ` , is empty as we consider closed LF objects.

Whereas a judgment of an encoded theory is represented as an LF type, a
metatheoretic statement is represented as a Beluga type. As is often the case,
implications are modelled using simple functions written with → . As before,
the free variables M and M’ are implicitly bound by Π-types at the outside,
which correspond to universal quantification. In terms of expressiveness,
Beluga is comparable to a first-order logic with fixed points together with
LF as an index domain.

With theorem configuration out of the way, the proof begins with a sin-
gle subgoal whose type is simply the statement of the theorem under no
assumptions. Since this subgoal has a function type, Harpoon will auto-
matically apply the intros tactic: first, the (implicitly) universally quanti-
fied variables M, M’ are added to the meta-context; second, the assumptions
s : [` step M M’] and h : [` halts M’] are added to the program context.
Observe that since M and M’ have type tm T, intros also adds T to the meta-
context, although it is implicit in the definitions of step and halts and is not
visible. (See Harpoon example 1 Step 1.)

The proof proceeds by inversion on h. Using the split tactic, we add
the two new assumptions S:(` steps M’ M2) and V:(` val M2) to the meta-
context. (See Harpoon example 1 Step 1.) To build a proof for [` halts M],
we need to show that there is a step from M to some value M2. To build such a
derivation, we use first the unbox tactic on the computation-level assumption
s to obtain an assumption S’ in the meta-context which is accessible to the
LF layer. (See Harpoon example 1 Step 2.) Finally, we can finish the proof
by supplying the term [ ` halts/m (next S’ S) V] (See Harpoon example 1
Step 3.)
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Step 1 Step 2 Step 3

Meta-context:
T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> split h

Meta-context:
T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)
M2 : ( ` tm T)
S : ( ` steps M’ M2)
V : ( ` val M2)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> unbox s as S’

Meta-context:
T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)
M2 : ( ` tm T)
S : ( ` steps M’ M2)
V : ( ` val M2)
S’ : ( ` step M M’)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> solve

[` halts/m (next S’ S) V]

Harpoon example 1: Interactive session of the proof for the halts_step
lemma.

3.3 Setup continued: reducibility

We define normalization using reducibility candidates [19]. That is, for each
type T we define a set of terms reducible at that type. All reducible terms are
required to halt, and terms reducible at an arrow type are required to produce
reducible output given reducible input. Formally, a term M is reducible at
type (arr T1 T2), if for all terms N:tm T1, if N is reducible at type T1, then
(app M N) is reducible at type T2. Reducibility cannot be directly encoded at
the LF layer, as it is not merely describing the syntax tree of an expression or
derivation. Instead, we encode the set of reducible terms Reduce as a stratified
type (see [23]). This can be seen as a restricted form of type-level function,
defined inductively on the type T used as an index.
stratified Reduce : {T : [` tp]} [` tm T] → type =

| Unit: [` halts M] → Reduce [` unit] [` M]
| Arr : [` halts M]

→ ({N:[` tm T1]} Reduce [` T1] [` N] → Reduce [` T2] [` app M N])
→ Reduce [` arr T1 T2] [` M];
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3.4 Backwards Closed Property: tactics
msplit, suffices, and by

We now consider one of the key lemmas in the weak normalization proof,
called the backwards closed lemma, i.e. if M’ is reducible at some type T and
M steps to M’, then M is also reducible at T.

We prove this lemma by induction on T. This is specified by referring to
the position of the induction variable in the statement.

Name of theorem: bwd_closed
Statement of theorem: {T : [` tp]} {M : [` tm T]} {M’ : [` tm T]}

[` step M M’] → Reduce [` T] [` M’] → Reduce [` T] [` M]
Induction order: 1

After Harpoon automatically introduces the meta-variables T, M, and M’

together with an assumption s : [` step M M’] and r : Reduce [` T] [` M’],
we use msplit T to split the proof into two cases (see Harpoon Proof 2
Step 1). Whereas split case analyzes a Beluga type, msplit considers the
cases for a (contextual) LF type. In reality, msplit is syntactic sugar for a
more verbose use of the ordinary split tactic.

The case for T = b is straightforward (see Harpoon Proof 2 Step 2 and 3).
First, we use the split tactic to invert the premise r : Reduce [` b] [` M’].
Then, we use the by tactic to invoke the halts_step lemma (see Sec. 3.2) to
obtain an assumption h : [` halts M]. We solve this case by supplying the
term Unit h (Harpoon Proof 2 Step 3).

In the case for T = arr T1 T2, we begin similarly by inversion on r using
the split tactic (Harpoon Proof 3 Step 4). We observe that the goal type is
Reduce [` arr T1 T2] [` M], which can be produced by using the Arr construc-
tor if we can construct a proof for each of the user-specified types, [` halts M]

and {N:[` tm T1]} Reduce [` T1] [` N] → Reduce [` T2] [` app M N]. Such
backwards reasoning is accomplished via the suffices tactic. The user sup-
plies a term representing an implication whose conclusion is compatible with
the current goal and proceeds to prove its premises as specified (see Har-
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Step 1 Step 2 Step 3

Meta-context:
T : ( ` tp )
M : ( ` tm T )
M’ : ( ` tm T )

Computational context:
s : [` step M M’]
r : Reduce [` T] [` M’]

Reduce [` T] [` M]
> msplit T

Meta-context:
M : ( ` tm b )
M’: ( ` tm b )

Computational context:
s : [` step M M’]
r : Reduce [` b] [` M’]

Reduce [` b] [` M]
> split r

Meta-context:
M : ( ` tm b )
M’: ( ` tm b )

Computational context:
s : [` step M M’]
h’: [` halts M’ ]
r : Reduce [` b] [` M’]

Reduce [` b] [` M]
> by halts_step s h’

as h;
solve Unit h

Harpoon example 2: Backwards closed lemma. Step 1: Case analysis of
the type T; Steps 2 and 3: Base case (T = b).

poon Proof 3 Step 5).
To prove premise 1>, we apply the halts_step lemma (Harpoon Proof 4

Step 6). As for premise 2>, Harpoon first automatically introduces the
variable N:(` tm T1) and the assumption r1:Reduce [` T1] [` N], so it remains
to show Reduce [` T2] [` app M N]. We deduce r’:Reduce [` T2] [` app M’ N]

using the assumption rn. Using s:[` step M M’], we build a derivation
s’:[` step (app M N) (app M’ N)] using s_app. Finally, we appeal to the in-
duction hypothesis. Using the by tactic, we write out and refer to the recur-
sive call to complete the proof (Harpoon Proof 4 Step 7).

Note that Harpoon allows users to use underscores to stand for argu-
ments that are uniquely determined (see Harpoon Proof 4 Step 7). We
enforce that these underscores stand for uniquely determined objects in or-
der to guarantee that the contexts and the goal type of every subgoal be
closed. This ensures modularity: solving one subgoal does not affect any
other open subgoals.

Using the explained tactics, one can now prove the fundamental lemma
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Step 4 Step 5

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
r

: Reduce [` arr T1 T2][` M’]

Reduce [` arr T1 T2][` M]
> split r

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2][` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]

Reduce [` arr T1 T2][` M]
> suffices by Arr
1> [` halts M]
2> {N : ( ` tm T1)}Reduce [` T1][` N]
→ Reduce [` T2][` app M N]

Harpoon example 3: Backwards closed lemma: Step Case

and the weak normalization theorem. For a more comprehensive description
of this proof in Beluga see [7, 8].

3.5 Additional features

Besides the tactics already discussed in this section, our implementation sup-
ports several others. Two are variants on split. First, the invert tactic splits
on the type of a given term, but checks that the split produces a unique case.
Second, the impossible tactic verifies that the split produces no cases, so the
supplied term’s type is empty.

The strengthen tactic can be used to strengthen the contextual type of a
given declaration according to a type subordination analysis [51]. This tactic
is essential in the completeness proof for algorithmic equality [8].

We also support a number tactics that do not contribute to the elabora-
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Step 6 Step 7

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2] [` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]

[` halts M]
> by halts_step s h’ as h

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))
N : (` tm T1)

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2] [` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]
r1 : Reduce [` T1] [` N]

Reduce [` T2] [` app M N]
> by (rn [` N] r1) as r’;

unbox s as S; by [` s_app S] as s’;
by (bwd_closed [` T2] _ _ s’ r’)
as ih

Harpoon example 4: Backwards closed lemma: Step Case – continued

tion of the proof, called administrative tactics. Many of these are for navi-
gating and listing theorems and subgoals. Besides navigation commands, we
include an undo tactic for rolling back previous steps in a proof.

Our implementation also performs some rudimentary automation to de-
tect available assumptions that match the current goal type. Already, this is
quite convenient as it automatically eliminates certain trivial subgoals from
proofs.
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Chapter 4

A Logical Foundation for
Interactive Theorem Proving

In this chapter we give a logical foundation for interactive command-driven
theorem proving in Beluga using Harpoon. In particular, we describe Har-
poon’s interactive commands, their relationship to proof scripts, and the
translation from proof scripts into Beluga programs.

4.1 Background: proofs as programs

We have already described programming in Beluga in Sec. 2.4, but that dis-
cussion remained at a very high level to give intuition about the system. Here
we describe formally Beluga’s programming language where we can describe
(inductive) proofs as total recursive programs. From a logical perspective,
a Beluga program witnesses a theorem in a first-order logic equipped with
induction over a specific index domain. Recall that in general, there are
many possible index domains to choose from. Beluga chooses contextual LF
together with first-class contexts as its index language. Keeping this in mind,
we keep the index domain abstract in the description of Beluga below. We
abstractly refer to terms and types in the index language by index term C
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and index type U .

Index type U ::= . . . Index context ∆ ::= · | ∆, X:U
Index term C ::= . . . Index substitution θ ::= · | θ, C/X

Variables occurring in index terms are declared in an index context ∆. We
use index substitutions to model the runtime environment of index variables.
Looking up X in the substitution θ returns the index term C to which X

is bound at runtime. The index context ∆ captures the information that is
statically available and is used during type checking.

In the examples from Chap. 3, the index domain included the definitions
for tp, tm A, step M M, and steps M M. Recall that to make statements about
those index domain objects, we pair those objects (and their types) together
with the context in which they are meaningful. In the grammar above, U
refers to such a contextual type and C denotes a contextual object, for exam-
ple ( ` arr unit unit) is the contextual type of ( ` lam λx. x). Contextual
objects may contain index variables that are declared in ∆. For example,
( ` steps M M) is meaningful in the index context ∆ = A:( ` tp), M:( ` tm A).

We do not describe here the index language in full detail – it is quite
technical, it has been described elsewhere, and such a level of detail is not
crucial for the understanding or our design of Harpoon. Instead, we refer
the interested reader to [49, 23]. Instead we list several relevant properties
of the index language to be compatible with our current presentation.

Type checking index terms. ∆ ` C ⇐= U

Substitution principle. If ∆ ` θ ⇐= ∆′ and ∆′ ` C ⇐= U then ∆ `
[θ]C ⇐= [θ]U .

Coverage. cov (∆;U) =
−−−−−−−−−−→
(Ck; θk; ∆k; Γk) computes a covering set for U in

the meta-context ∆ such that for each k, the index pattern Ck satisfies
∆k ` Ck ⇐= [θk]U . Moreover, it computes any well-founded recursive
calls and includes them as part of Γk (see [38]).
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Below we describe the core fragment of Beluga as a bidirectional type
system. Terms are separated into those that we check against a given type
and those for which we synthesize a type. To keep the presentation simple,
we model (co)inductive and stratified types as constants. Types include
simple functions τ1 → τ2, dependent functions ΠX:U. τ , boxed types [U ],
and constants b

−→
C used to model (co)inductive and stratified types. Here b

stands for an indexed type family and recall U stands for an index type.

Base Types β ::= b
−→
C | [U ]

Types τ ::= β | ΠX:U. τ | τ1 → τ2

Checkable Terms e ::= ḡ | i | [C] | case i of −−−−−→pk ⇒ ek

| mlam X ⇒ e | fn x⇒ e

| let x = i in e | let box X = i in e
Synthesizable Terms i ::= x | c | i C | i e | (e : τ)
Patterns p ::= [C] | c −→p | x
Context Γ ::= · | Γ, x:τ
Subgoal context Ω ::= · | Ω, g:(∆; Γ ` τ) | Ω, ḡ:(∆; Γ ` τ)

Synthesizable terms include variables, constants, and simple and dependent
function eliminations. All synthesizable terms are checkable. Conversely, a
type annotation allows embedding a checkable term as a synthesizable term.
This notably enables using a contextual object as a case scrutinee.

Checkable terms include simple and dependent function abstraction (fn
and mlam respectively), boxed index objects [C], and a case expression. We
also include for convenience two different let-expressions let x = i in e and
let box X = i in e, although in principle each could be defined using a
function (fn and mlam respectively) that is immediately eliminated. Such a
translation must be type-directed in our bidirectional setting, as functions
are checkable terms which cannot appear on the left-hand side of a function
elimination. Broadly speaking, such a translation would synthesize the type
for i in order to construct a type annotation for the anonymous function to
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embed it as the subject of the function elimination.
Last, the syntax of checkable expressions contains contextual variables ḡ

following [29, 5], which we call subgoal variables. A subgoal variable repre-
sents a typed hole in the program that remains to be filled by the program-
mer. It captures in its type (∆; Γ ` τ) the typechecking state at the point
it occurs: it remains to construct a term that checks against τ in the index
context ∆ with the assumptions in Γ. Observe that subgoal variables appear
only in the term language: this ensures that subgoals cannot refer to each
other. Since subgoals are independent of each other, they may be solved in
any order by the user. An expression is called complete if it is free from
subgoals, and incomplete otherwise.

Subgoal variables are collected in a subgoal context Ω. Algorithmically, we
understand a subgoal context Ω not as an input to the typing judgments in
Fig. 4.1 but rather as an output: the set of holes in the program is computed
by the judgment. This explains why we must check a subgoal variable against
a type τ .

Most of the typing rules in Fig. 4.1 are as expected. To typecheck a
case expression, we infer the type of the expression that we want to analyze,
then generate a covering set consisting of the pattern and the refinement sub-
stitution θ. We then verify that the given set of patterns matches the covering
set using the primitive cov (∆; Γ; β) which in turn relies on the coverage prim-
itive cov (∆;U) for index objects. Similar to the coverage primitive for index
types, the coverage primitive for computation-level base types also generates
well-founded recursive calls and includes in Γk. Concretely, Γk is an extension
of [θk]Γ that includes any program variables bound by the pattern as well as
any well-founded recursive calls. Finally, we check each branch considering
the index susbtitution θk that accounts for any index variable refinements
induced by the pattern. We omit the typing rules for patterns: given that
patterns are a subset of expressions, their typing mirrors expression typing.

As for the subgoal context Ω, every rule’s conclusion collects all premise
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Ω | ∆; Γ ` e⇐= τ Beluga term e checks against type τ

Ω | ∆, X:U ; Γ ` e⇐= τ

Ω | ∆; Γ ` mlam X ⇒ e⇐= ΠX:U. τ
Ω | ∆; Γ, x : τ1 ` e⇐= τ2

Ω | ∆; Γ ` fn x⇒ e⇐= τ1 → τ2

Ω | ∆; Γ ` i =⇒ τ

Ω | ∆; Γ ` i⇐= τ ḡ : (∆; Γ ` τ) | ∆; Γ ` ḡ ⇐= τ

Ω | ∆; Γ ` i =⇒ β cov (∆; Γ; β) =
−−−−−−−−−−→
(pk, θk,∆k,Γk)

for all k. Ωk | ∆k; Γk ` ek ⇐= [θk]τ

Ω,−→Ωk | ∆; Γ ` case i of −−−−−→pk ⇒ ek ⇐= τ

Ω1 | ∆; Γ ` i =⇒ τ ′ Ω2 | ∆; Γ, x : τ ′ ` e⇐= τ

Ω1,Ω2 | ∆; Γ ` let x = i in e⇐= τ

Ω1 | ∆; Γ ` i =⇒ [U ] Ω2 | ∆, X:U ; Γ ` e⇐= τ

Ω1,Ω2 | ∆; Γ ` let box X = i in e⇐= τ

Ω | ∆; Γ ` i =⇒ τ Beluga term i synthesizes type τ

Γ(x) = τ

· | ∆; Γ ` x =⇒ τ

Sig(c) = τ

· | ∆; Γ ` c =⇒ τ

Ω | ∆; Γ ` e⇐= τ

Ω | ∆; Γ ` (e : τ) =⇒ τ

Ω | ∆; Γ ` i =⇒ ΠX:U. τ ∆ ` C ⇐= U

Ω | ∆; Γ ` i C =⇒ [C/X]τ

Ω1 | ∆; Γ ` i =⇒ τ1 → τ2 Ω2 | ∆; Γ ` e⇐= τ1

Ω1,Ω2 | ∆; Γ ` i e =⇒ τ2

` Ω ctx Ω is a valid subgoal context

` · ctx
` Ω ctx ∆; Γ ` τ : type
` (Ω, g : (∆; Γ ` τ)) ctx

Figure 4.1: Beluga’s bidirectional type system, and well-formedness of sub-
goal contexts.
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subgoal contexts to propagate the subgoals downwards. Note that all subgoal
variables are distinct and occur exactly once: we allow neither weakening nor
contraction for Ω. We distinguish between subgoal variables ḡ that stand for
programs from those g that stand for proofs described in Sec. 4.2. We call
these program subgoal variables and proof subgoal variables, respectively.
Observe that a proof subgoal variable cannot appear within a program, so the
subgoal context Ω in Fig. 4.1 only ever contains program subgoal variables,
of the form ḡ. As expected, one can define a notion of substitution [e′/ḡ]e
that eliminates a subgoal variable, satisfying the following theorem.

Theorem 1 (Subgoal Substitution Property 1). If Ω, ḡ:(∆′; Γ′ ` τ ′) | ∆; Γ `
e⇐= τ and Ω′ | ∆′; Γ′ ` e′ ⇐= τ ′, then Ω,Ω′ | ∆; Γ ` [e′/ḡ]⇐= τ .

Proof. By induction on the first typing derivation.

This property together with a corresponding one for proof subgoal vari-
ables is central to the soundness of interactive proof development in Sec. 4.3.

We omit the kinding rules and the well-formedness rules for ∆ and Γ.
However, to emphasize that each subgoal type cannot depend on other sub-
goal types, we include the well-formedness rules for the subgoal context Ω in
Fig. 4.1.

4.2 Harpoon Script Language

To build proofs interactively, we introduce interactive commands, called ac-
tions, which are typed by the user into the Harpoon interactive prompt.
An action is executed on a particular subgoal and eliminates it while possi-
bly introducing new subgoals. Eliminating a subgoal with exactly one new
subgoal can be understood as transforming the initial subgoal.

Actions α ::= intros | solve e | by i as x | split i | suffices i by
−−→
k : τ
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We only consider here a subset of the tactics we support in Harpoon; others
and new ones can be added following the same principles: intros introduces
all available assumptions; solve provides an explicit term to close the current
subgoal; by allows to refer to a lemma, introduce an intermediate result, or
use an induction hypothesis, binding the result to a new program variable;
unbox is the same as by, but it binds its result to a new index variable; split
generates a covering set of cases to consider for a given scrutinee; suffices
allows programmers to reason backwards via a lemma or a constructor.

Behind the scenes, executing a tactic builds a proof script that represents
it, and substitutes this script for the subgoal that the tactic eliminates. A
proof script very closely reflects the structure of the proof, and the core
constructs of the proof script language closely resemble the syntax of actions.

Proof Script P ::= g | D | by i as x;P | unbox i as X;P
Directives D ::= solve e | intros {∆; Γ ` P} | split i as

−−−−−−−−−→
{∆k; Γk ` Pk}

| suffices by i to show
−−−−−−−−−→
(k> τk as Pk)

We give the typing rules for proof scripts and directives in Fig. 4.2. In
its simplest form, a proof script P is either a proof subgoal variable g or a
directive D that describes how to prove a given goal. The understanding of
a subgoal variable here is the same as in the previous section: it is a con-
textual variable of type (∆; Γ ` τ), representing that it remains to show τ

in the index context ∆ with assumptions Γ. As before, proof subgoal vari-
ables cannot depend on any other subgoal variables. Given that expressions
appear embedded within a proof script and that program subgoal variables
may appear within these expressions, we have that the subgoal context Ω
computed from a proof script may contain both forms of subgoal variable.
We lift susbtitution of an expression for a program subgoal variable to proof
scripts, writing [e/ḡ]P , and we define substitution of a proof script for a
proof subgoal variable, written [P ′/g]P . These forms of substitution admit
a soundness property.
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Theorem 2 (Subgoal Substitution Property 2).

1. If Ω′ | ∆′; Γ′ ` e ⇐= τ ′ and Ω, ḡ:(∆′; Γ′ ` τ ′) | ∆; Γ `P P ⇐= τ , then
Ω,Ω′ | ∆; Γ `P [e/ḡ]P ⇐= τ .

2. If Ω′ | ∆′; Γ′ `P P ′ ⇐= τ ′ and Ω, g:(∆′; Γ′ ` τ ′) | ∆; Γ `P P ⇐= τ ,
then Ω,Ω′ | ∆; Γ `P [P ′/g]P ⇐= τ .

Proof. 1. By induction on the typing for P , using Subgoal Substitution
Property 1 when we arrive at an embedded expression e. 2. By induction on
the typing for P .

We extend a proof script using by or unbox to introduce new assump-
tions. The by construct is used both for invoking a lemma, introducing an
intermediate result, and for appealing to an induction hypothesis, extending
Γ with a new variable representing the invocation. The unbox construct is
identical to by, but it binds a new index variable, requiring that the term be-
ing unboxed synthesize a boxed contextual type [U ]. Often, one unboxes an
assumption from Γ, but it is convenient to allow directly unboxing the result
of an appeal to a lemma or an induction hypothesis, without first requiring
that this result be bound to a program variable in Γ.

To check well-foundedness of appeals to induction hypotheses, we adopt
the approach used internally by Beluga. When the user states a theorem,
they must explicitly give a termination measure. Then, when splitting on
a variable that participates in the termination measure, we can generate all
valid induction hypotheses in advance and store them in the context Γ (see
[38]). Finally, when we encounter an appeal to an induction hypothesis, it
suffices to check whether it is compatible with any of the precomputed ones
in Γ.

There are four different directives we can use in a proof. The simplest
directive, solve e, merely ends a proof script by giving a proof term e as
a witness of the appropriate type. To introduce hypotheses into the index
context ∆ and the context Γ, we use intros {∆′; Γ′ ` P ′} where ∆′; Γ′ are
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Ω | ∆; Γ `P P ⇐= τ Proof script P corresponds to theorem τ

· | ∆; Γ ` i =⇒ τ ′ Ω | ∆; Γ, x:τ ′ `P P ⇐= τ

Ω | ∆; Γ `P by i as x;P ⇐= τ

· | ∆; Γ ` i =⇒ [U ] Ω | ∆, X:U ; Γ `P P ⇐= τ

Ω | ∆; Γ `P unbox i as X;P ⇐= τ

g : (∆; Γ ` τ) | ∆; Γ `P g ⇐= τ

Ω | ∆; Γ `D D ⇐= τ

Ω | ∆; Γ `P D ⇐= τ

Ω | ∆; Γ `D D ⇐= τ Directive D establishes theorem τ

· | ∆; Γ ` e⇐= τ

· | ∆; Γ `D solve e⇐= τ

g : (∆′; Γ′ ` β) | ∆; Γ ` τ  e Ω | ∆′; Γ′ `P P ⇐= β

Ω | ∆; Γ `D intros {∆′; Γ′ ` P} ⇐= τ

· | ∆; Γ ` i =⇒ β cov (∆; Γ ` β) =
−−−−−−−−−→
( ; θk; ∆k; Γk)

for all k. Ωk | ∆k; Γk `P Pk ⇐= [θk]τ⋃
k Ωk | ∆; Γ `D split i as

−−−−−−−−−→
{∆k; Γk ` Pk} ⇐= τ

· | ∆; Γ ` i =⇒ Π∆′. τ ′n → . . .→ τ ′1 → τ ′0
∆ ` (id∆, θ) : (∆,∆′) ∆ ` [θ]τ ′0 = τ0

for all k ∈ [1, n] ∆ ` [θ]τ ′k = τk Ωk | ∆; Γ `P Pk ⇐= τk⋃
k Ωk | ∆; Γ `D suffices by i to show

−−−−−−−−−→
(k> τk as Pk)⇐= τ0

Figure 4.2: The type system for Harpoon proofs and directives
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extensions of ∆ and Γ. The new goal type τ ′ and the extended contexts
∆′; Γ′ are computed from the current subgoal by unrolling it as in Fig. 4.3.
This process stops once we reach a base type β. As the type is unrolled, the
judgment also constructs a partial program that is used for the translation
in Sec. 4.4. Understood algorithmically, the unrolling judgment encodes a
total function whose output respects an expected soundness property.

Theorem 3 (Soundness of Unrolling). 1. For any ∆ and Γ and any type
τ , there exists a unique term e such that g : (∆′; Γ′ ` β) | ∆; Γ ` τ  e,
where ∆′ and Γ′ are extensions of ∆ and Γ, respectively.

2. If g : (∆′; Γ′ ` β) | ∆; Γ ` τ  e, then g : (∆′; Γ′ ` β) | ∆; Γ ` e⇐= τ .

Proof. 1. By induction on τ ; 2. by induction on the given derivation.

g : (∆′; Γ′ ` β) | ∆; Γ ` τ  e

Beluga type τ unrolls to β in the extended meta-context ∆′ and
computation context Γ′.

g : (∆; Γ ` β) | ∆; Γ ` β  g

g : (∆′; Γ′ ` β) | ∆; Γ, x:τ1 ` τ2  e

g : (∆′; Γ′ ` β) | ∆; Γ ` τ1 → τ2  fn x⇒ e

g : (∆′; Γ′ ` β) | ∆, X:U ; Γ ` τ  e

g : (∆′; Γ′ ` β) | ∆; Γ ` ΠX:U. τ  mlam X ⇒ e

Figure 4.3: Unrolling a Beluga type.

The directive split breaks up the proof into cases, one for each constructor
of the type τ ′ of the term i being split on. The cov primitive computes a
covering set of cases and generates well-founded recursive calls based on the
user-defined termination measure (see [38]). Each computed 4-tuple contains
the pattern pk (unused here, but used and explained in Sec. 4.4), a refinement
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substitution θk such that ∆k ` θk : ∆, and contexts ∆k and Γk. The proof is
then decomposed into multiple branches, one for each k. Each branch may
introduce new assumptions, namely subderivations, and may refine other
assumptions via the substitution θk. It is also possible for split to produce
no cases, which corresponds to an elimination principle for empty types.

Last, the suffices directive reasons backwards from by current goal and
introduces new proof obligations based on what it would take to establish
the current goal. For simplicity, we only consider here types of the form
Π∆′.τ ′n → . . . → τ ′1 → τ ′0. If the current goal type ∆ ` τ0 is an instance
of the target type τ ′0, i.e. there exists a substitution θ s.t. ∆ ` θ : ∆′ and
[θ]τ0 = τ0, then the proof is complete if we can construct, for each k, a Pk

fullfilling the stated proof obligation [θ]τ ′k. In practice, θ is computed by
unification given both the goal type τ0 and the target type τ ′0.

4.3 Interactive Proof Development

We now describe the construction of a proof script based on the actions in
Fig. 4.4. This relationship is by design both immediate and straightforward:
each action generates a well-typed proof fragment, and these fragments are
assembled together by subgoal substitutions to form the overall proof script.

Each action is simply elaborated into its corresponding construct in the
proof script language, using subgoal variables where appropriate to explicitly
model the remaining proof obligations. Multiple actions can be sequenced
to form an interactive session ᾱ. A session is an idealized representation of
how the user interacts with the proof assistant.

Session ᾱ ::= · | α, ᾱ

The proof script P that results from a session ᾱ is well-typed. To see this,
we first establish that the partial proof script generated by a single action
indeed solves the subgoal in which it is executed.
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∆; Γ ` α : τ Ω ` P Action α applied to subgoal (∆; Γ ` τ) produces
a proof script P with subgoals Ω

Ω | ∆; Γ ` e =⇒ τ

∆; Γ ` solve e : τ Ω ` solve e

g : (∆′; Γ′ ` β) | ∆; Γ ` τ  e

∆; Γ ` intros : τ g : (∆′; Γ′ ` β) ` intros {∆′; Γ′ ` g}

Ω | ∆; Γ ` i =⇒ τ ′

∆; Γ ` by i as x : τ Ω, g : (∆; Γ, x : τ ′ ` τ) ` by i as x; g

Ω | ∆; Γ ` i =⇒ β cov (∆; Γ; β) =
−−−−−−−−−→
( ; θk; ∆k; Γk)

∆; Γ ` split i : τ Ω,
−−−−−−−−−−−−−−→
gk : (∆k; Γk ` [θk]τ) ` split i as

−−−−−−−−−→
{∆k; Γk ` gk}

Ω | ∆; Γ ` i =⇒ Π∆′.τ ′n → . . .→ τ ′1 → τ ′0

∆ ` θ : (∆,∆′) ∆ ` [θ]τ ′k = τk ∆ ` [θ]τ ′0 = τ0

∆; Γ ` suffices i by −→τk : τ0

Ω,
−−−−−−−−−−→
gk : (∆; Γ ` τk) ` suffices by i to show

−−−→
k> gk

Figure 4.4: Typing of interactive actions and elaboration into proof scripts.
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Ω ` P ᾱ Ω′ ` P ′
Sequence of actions ᾱ transforms proof script P
with subgoals Ω into proof script P ′ with subgoals
Ω′.

Ω ` P · Ω ` P I-Refl

∆; Γ ` α : τ Ω2 ` P ′ Ω1,Ω2 ` [P ′/g]P ᾱ Ω3 ` Q
Ω1, g : (∆; Γ ` τ) ` P α,ᾱ Ω3 ` Q

I-Single

Figure 4.5: Rules for sequencing interactive Harpoon actions. Note that
we can reorder Ω which allows us in principle to work on any subgoal in Ω
in the I-Single rule.

Theorem 4 (Action Soundness).

If ∆; Γ ` α : τ Ω ` P , then Ω | ∆; Γ `P P ⇐= τ .

Proof. By case analysis on the given derivation.

Then, given that individual actions produce well-typed proof fragments,
it suffices to use the fact that subgoal substitution preserves types to establish
that a whole session ᾱ generates a well-typed proof script.

Theorem 5 (Session Soundness).

If Ω |∆; Γ `PP ⇐= τ and Ω `P ᾱ Ω′ `P ′, then Ω′ |∆; Γ `PP
′ ⇐= τ .

Proof. By induction using the previous theorem and the subgoal substitution
property.

What one would like to establish next is a completeness result: any prov-
able statement τ admits a session ᾱ whose elaboration generates a proof
script P such that · | ∆; Γ `P P ⇐= τ . As a proxy for provability and in
light of the translation presented in the following section, one can consider
statements τ having a Beluga term e that check against that type. Sadly, we
cannot establish completeness for now, since Beluga supports deep pattern
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matching (in which a pattern consists of nested constructors), whereas the
split directive can only capture 1-deep patterns.

4.4 Translation

The translation in Fig. 4.6 from proofs to Beluga programs is now straight-
forward. An unbox becomes a let box construct in Beluga. Similarly,
by i as x translates into a let-expression. The translation of directives is
also direct. For intros, we already built an incomplete expression e when we
were unrolling the type τ , so it suffices to translate P to an expression e′ and
perform a substitution. The soundness of unrolling and the subgoal substitu-
tion property ensure that this preserves types. The split directive translates
to a case-expression in Beluga, making use of the patterns produced by cov.
Finally the suffices directive translates into a function application. The
following soundness property follows immediately.

Theorem 6 (Translation Soundness).

1. For any proof script P , if Ω | ∆; Γ `P P ⇐= τ , then there exists a
unique expression e such that Ω | ∆; Γ `P P−⇀ e⇐= τ .

2. For any directive D, if Ω | ∆; Γ `D D ⇐= τ , then there exists a unique
expression e such that Ω | ∆; Γ `D D−⇀ e⇐= τ .

Moreover, in both cases e is such that Ω | ∆; Γ ` e⇐= τ .

Proof. By induction on the translation derivation.
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Ω | ∆; Γ `P P−⇀ e⇐= τ

Proof P is translates to Beluga term e

Ω | ∆; Γ `D D−⇀ e⇐= τ

Ω | ∆; Γ `P D−⇀ e⇐= τ g : (∆; Γ ` τ) | ∆; Γ `P g−⇀ g ⇐= τ

· | ∆; Γ ` i =⇒ τ ′ Ω | ∆; Γ, x : τ ′ `P P−⇀ e⇐= τ

Ω | ∆; Γ `P by i as x;P−⇀ let x = i in e⇐= τ

· | ∆; Γ ` i =⇒ [U ] Ω | ∆, X:U ; Γ `P P−⇀ e⇐= τ

∆; Γ `P unbox i as X;P−⇀ let box X = i in e⇐= τ

∆; Γ `D D−⇀ e⇐= τ Directive D translates to Beluga term e

· | ∆ `; Γ ` e⇐= τ

· | ∆; Γ `D solve e−⇀ e⇐= τ

g : (∆′; Γ′ ` τ ′) | ∆; Γ ` τ  e Ω | ∆′; Γ′ `P P−⇀ e′ ⇐= τ ′

Ω | ∆; Γ `D intros {∆′; Γ′ ` P}−⇀ [e′/g]e⇐= τ

· | ∆; Γ ` i =⇒ β cov (∆; Γ; β) =
−−−−−−−−−−→
(pk; θk; ∆k; Γk)

for all k. Ωk | ∆k; Γk `P Pk−⇀ ek ⇐= [θk]τ⋃
k Ωk | ∆; Γ `D split i as

−−−−−−−−−→
{∆k; Γk ` Pk}−⇀ case i of −−−−−→pk ⇒ ek ⇐= τ

· | ∆; Γ ` i =⇒ Π∆′. τ ′n → . . .→ τ ′1 → τ ′0 ∆ ` θ : ∆,∆′
∆ ` [θ]τ ′k = τk Ωk | ∆; Γ `D Pk−⇀ ek ⇐= τk⋃
k Ωk | ∆; Γ `D suffices i by

−−−−−→
τk as Pk−⇀ i

−→
Cj
−→ek ⇐= τ0

where θ = C1/X1, . . . Cm/Xm

Figure 4.6: The translation from a Harpoon proof script to a Beluga pro-
gram.
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Chapter 5

Conclusion

5.1 Evaluation

One should be able to use Harpoon to prove anything that one could prove
in Beluga. As mentioned in Sec. 4.3, we do not prove a completeness theorem,
so instead we have replicated a number of case studies originally proven as
functional programs in Beluga. (See table 5.1.)

Case study Main feature tested

MiniML value soundness Automatic solving of trivial
goals

MiniML compilation com-
pleteness Unboxing program variables

STLC type preservation Automatic solving of trivial
goals

STLC type uniqueness Open term manipulation
STLC weak normalization Advanced splitting
STLC strong normalization [1] Large development
STLC alg. equality complete-
ness [8] Large development

Table 5.1: Summary of proofs ported to Harpoon from Beluga.

The first four examples are purely syntactic arguments that proceed by
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straightforward induction. The remaining examples involve more sophisti-
cated features from Beluga’s computation language such as inductive and
stratified types used to encode logical relations.

Recreating these case studies in Harpoon was straightforward, since
most constructs from Beluga have clear analogues in Harpoon. One chal-
lenge was to decide when to use the suffices tactic, since most reasoning
in Beluga is purely forwards.

Porting these case studies provides us with insight as to future work
regarding automation. In the syntactic case studies, proofs tend to proceed
by case analysis on the induction variable, inverting any other assumptions
when possible, invoking available induction hypotheses, and applying a few
inference rules. This general recipe could be automated in whole or in part
to simplify the development of similar simple proofs.

5.2 Related work

Although we devoted Chap. 2 to discussing the prior work related to Har-
poon, we wish to now make a critical comparison between Harpoon and some
of that work.

The Hazelnut system is similar to Harpoon in that its metatheory for-
mally describes partial programs and the user interactions that construct
such a program [32]. Whereas Hazelnut concentrates on programming, Har-
poon is an interface to Beluga, a proof assistant. Hazelnut’s edit actions
construct a simply-typed program by successively filling holes, and types in
Hazelnut may also contain holes that are refined by edit actions. In Hazel-
nut, there is a notion of cursor that is absent in Harpoon. The focus of the
Harpoon user is always on an (unsolved) subgoal, whereas in Hazelnut, one
can use certain actions to move to arbitrary locations in the constructed ex-
pression. Harpoon distinguishes clearly between expressions containing holes
and expressions free of holes, thanks to the subgoal context Ω that is part of
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the typing judgments. This context is also used to drive the selection of the
next hole to work on when considering an interactive session ᾱ. The typing
judgment for Hazelnut, in contrast, does not show the presence of subgoals
in the expression. A context analoguous to Ω is not necessary as a means
of finding the next subgoal to work on since the system is equipped with
general movement actions.

Abella is similar to the Beluga project more broadly in that it is a domain-
specific language using HOAS for mechanizing metatheory [17, 18]. Its the-
oretical basis differs from Beluga’s, however, and it extends first-order logic
with a ∇ quantifier to express properties about variables. Contexts and
simultaneous substitutions are expressed as inductive definitions, but since
they are not first-class one must separately establish properties about them,
regarding e.g. substitution composition and context well-formedness. Inter-
active proof development in Abella follows the traditional model: the proof
state is manipulated using tactics drawn from a fixed set. No proof object
that witnesses the theorem is produced.

The VeriML system is grounded in Contextual Modal Type Theory, as is
Beluga. However, it differs in its goal, as it seeks to provide a very expressive
language for defining new tactics. In our work, we restrict ourselves to a
finite set of tactics with clearly defined semantics, whereas in VeriML one
can use effects such as state and nontermination in order to build complex
decision procedures in addition to more basic tactics. Both VeriML and
Beluga follow a two-layer approach: whereas Beluga’s object language is
contextual LF, VeriML’s is λHOLind, which the authors see as a common
core between Coq and HOL provers such as Isabelle and HOL-light. The
management of metatheoretic concerns such as substitutions and contexts is
low-level: one much explicitly model them, e.g. using lists.

Although much of the discussion in Chap. 2 focused on tactic languages
for Coq, all of these differ from Harpoon in their aims. Harpoon seeks simply
to provide a form of user interaction together with a well-specified semantics
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for those interactions based on an explicit notion of partial program. Ltac,
on the other hand, is meant as a language for defining new tactics, and
these tactics may implement decision procedures or restricted proof search
techniques. Given Beluga’s focus on mechanized metatheory, it is not clear
yet that one needs the ability to define decision procedures or use proof search
techniques. This is in fact the reason why we avoid using the word “tactic”
to refer to the interactive actions available in Harpoon: the notion of tactic
is much broader that what we aim for in Harpoon. The MetaCoq system, in
contrast with Ltac, is more foundational. It seeks to provide a formalization
of the Coq system within Coq itself. Moreover, it appears more akin to a
metaprogramming system than an interactivity layer: one can write MetaCoq
programs that are able to look up definitions and inspect them, and whose
effects generate new toplevel declarations. Harpoon is humbler, in that it
does not try to formalize Beluga within itself, nor does it provide any way to
generate new definitions. Instead Harpoon restricts its actions to those that
generate proof fragments (terms).

5.3 Final remarks

In conclusion, we have presented Harpoon, an interactive command-driven
front-end of Beluga for mechanizing metatheoretic proofs. Users develop
proofs using interactive actions that elaborate a proof script behind the
scenes. This elaboration’s metatheory which we have presented shows that
all intermediate partial proofs are well-typed with respect to a context of
outstanding subgoals to resolve. We have also developed the metatheory of
proof scripts, giving a sound translation to Beluga programs. This develop-
ment relies crucially on reasoning about partial programs, which we represent
as containing contextual variables, called subgoal variables, that capture the
current typechecking state. We have evaluated Harpoon on a number of
case studies, ranging from purely syntactic arguments to logical relations.
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In the future, we aim to improve the automation capabilities of Har-
poon. At first, we wish to add a built-in form of proof search to assist in
using the solve command, perhaps replacing it entirely. In the long term,
we hope to apply insights gained from work on Cocon [42] to enable users to
define custom tactics together with correctness guarantees about them.
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Appendix A

Harpoon Commands Reference

The information in this appendix is available online at https://beluga-lang.
readthedocs.io/en/latest/harpoon/interactive-reference.html but is repro-
duced here as a way of capturing a snapshot of the features of Harpoon
at the time of writing.

This appendix gives a complete list of the interactive commands sup-
ported by Harpoon. These commands are divided into two categories: ad-
ministractive actions (Sec. A.1). and proof actions (Sec. A.2) The former
category’s actions are used to obtain information from the system, to select
different subgoals, and to manipulate the history of proof actions. The latter
category’s actions solve subgoals and contribute to the construction of proof
scripts.

Harpoon is structured hierarchically: a user session consists of a number
of proof sessions, each of which contains a number of theorems, each of which
contains a number of subgoals. Theorems within a proof session are proven
by mutual induction and may refer to each other, but theorems belonging to
different sessions may not refer to each other.
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A.1 Administrative tactics

Administrative tactics are used to navigate the proof, obtain information
about functions or constructors, or to prove a lemma in the middle of another
proof.

undo

Undoes the effect of the previous proof tactic.

redo

Undoes the effect of a previous undo.

history

Displays the undo history.

theorem list

Lists all theorems in the current session.

theorem defer

Moves the current theorem to the bottom of the theorem stack, select-
ing the next theorem.

See select for a more flexible way to select a theorem.

theorem show-ihs

Display the induction hypotheses available in the current subgoal.

Note: this is a debugging command, and the output is not particularly
human-readable.

theorem dump-proof PATH

Records the current theorem’s partial proof to PATH.
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theorem show-proof

Displays the current theorem’s partial proof.

session list

Lists all active sessions together with all theorems within each session.

session defer

Moves the current session to the bottom of the session stack and selects
the next one.

See select for a more flexible way to select a theorem.

session create

Creates a new session. This command will start the session configura-
tion wizard for setting up the theorems in the new session.

session serialize

Saves the current session as partial proofs to the signature. In other
words, any work done interactively will be reflected back into the loaded
signature.

Note: this will drop the current undo history.

save

This command is a shortcut for session serialize.

subgoal list

Lists all remaining subgoals in the current theorem.

subgoal defer

Moves the current subgoal to the bottom of the subgoal stack and
selects the next one.
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select

select NAME selects a theorem by name for proving. See the session
list 〈cmd-session-list〉 command.

Note: when selecting a theorem from another session, be aware of the
consequences this has on scoping.

rename

Renames a variable. Use rename meta SRC DST to rename a metavari-
able and rename comp SRC DST to rename a program variable.

Warning: renaming is poorly supported at the moment! The result-
ing Harpoon proof script that is generated by interactive proving will
not contain the renaming, and this could lead to accidental variable
capture.

toggle-automation

Use toggle-automation AUTO [STATE] to change the state of proof
automation features.

Valid values for STATE are on, off, and toggle. If unspecified, STATE
defaults to toggle.

type

Use type EXP to display the computed type of the given synthesizable
expression EXP.

info

Use info KIND OBJ to get information on the KIND named OBJ.

Valid values for KIND are:

theorem

displays information about the Beluga program or Harpoon proof
named OBJ.
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A.2 Proof actions

These are the actions that manipulate subgoals. In general, they solve the
current subgoal, possibly replacing it with zero or more subgoals. In case the
action generates exactly one subgoal, it can be understood as transforming
the subgoal it operates on.

intros

Use intros [NAME...] to introduce assumptions into the context.

Restrictions:

• The current goal type is either a simple or dependent function
type.

For Pi-types, the name of the assumption matches the name used in the
Pi. For arrow-types, names will be taken from the given list of names,
in order. If no names are given explicitly, then names are automatically
generated.

On success, this tactic will replace the current subgoal with a new
subgoal in which the assumptions are in the context.

Note: it is uncommon to use this tactic directly due to automation.

split

Use split EXP to perform case analysis on the synthesizable expression
EXP.

Restrictions:

• The expression EXP and its synthesized type may not contain unin-
stantiated metavariables.

On success, this tactic removes the current subgoal and introduces a
new subgoal for every possible constructor for EXP.
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msplit

Use msplit MVAR to perform case analysis on the metavariable MVAR.

This command is syntactic sugar for split [_ |- MVAR].

invert

Use invert EXP to perform inversion on the synthesizable expression
EXP. This is the same as using split EXP, but invert will check that
a unique case is produced.

impossible

Use impossible EXP to eliminate the uninhabited type of the syn-
thesizable expression EXP. This is the same as using split EXP, but
impossible will check that zero cases are produced.

by

Use by EXP as VAR [MODIFIER] to invoke a lemma or induction hy-
pothesis represented by the synthesizable expression EXP and bind the
result to the name VAR. The optional parameter MODIFIER specifies at
what level the binding occurs.

Valid values for MODIFIER are

boxed (default): the binding is made as a computational variable.

unboxed: the binding is made as a metavariable.

strengthened: the binding is made as a metavariable, and its context
is strengthened according LF subordination.

Restrictions:

• The defined variable VAR must not already be in scope.

• EXP and its synthesized type may not contain uninstantiated
metavariables.
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• (For unboxed and strengthened only.) The synthesized type
must be a boxed contextual object.

On success, this tactic replaces the current subgoal with a subgoal
having one additional entry in the appropriate context.

Note. LF terms whose contexts contain blocks are not in principle el-
igible for strengthening. But such a context is equivalent to a flat con-
text, and Beluga will automatically flatten any blocks when strength-
ening. Therefore, strengthened has a secondary use for flattening.

unbox

The command unbox EXP as X is syntactic sugar for by EXP as X
unboxed. See also by.

strengthen

The command strengthen EXP as X is syntactic sugar for by EXP
as X strengthened. See also by.

solve

Use solve EXP to complete the proof by providing an explicit checkable
expression EXP.

Restrictions:

• The expression EXP must check against the current subgoal’s type.

On success, this tactic removes the current subgoal, introducing no new
subgoals.

suffices

Use suffices by EXP toshow TAU... to reason backwards via the
synthesizable expression EXP by constructing proofs for each type an-
notation TAU.
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This command captures the common situation when a lemma or com-
putational constructor can be used to complete a proof, because its
conclusion is (unifiable with) the subgoal’s type. In this case, it suf-
fices to construct the arguments to the lemma or constructor.

The main restriction on suffices is that the expression EXP must
synthesize a type of the form
{X1 : U1} ... {Xn : Un} tau_1 → ... → tau_k → tau

Thankfully, this is the most common form of type one sees when work-
ing with Beluga.

Restrictions:

• The expression EXP must synthesize a compatible type, as above.

• Its target type tau must unify with the current goal type.

• Each type tau_i must unify with the i th type annotation given
in the command.

• After unification, there must remain no uninstantiated metavari-
ables.

Tip. Sometimes, not all the type annotations are necesary to pin down
the instantiations for the Pi-bound metavariables. Instead of a type,
you can use _ to indicate that this type annotation should be uniquely
inferrable given the goal type and the other specified annotations. It
is not uncommon to use suffices by i toshow _.

Tip. suffices eliminates both explicit and implicit leading Pi-types
via unification. It can sometimes be simpler to manually eliminate
leading explicit Pi-types via partial application: suffices by i [C]
... toshow .... When explicit Pi-types are manually eliminated,
the need for a full type annotation is less common.

On success, one subgoal is generated for each tau_i, and the current
subgoal is removed.
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In principle, this command is redundant with solve because one could
just write solve EXP to invoke the lemma directly, but this can be quite
unwieldy if the arguments to the lemma are complicated. Furthermore,
the arguments would need to be written as Beluga terms rather than
interactively constructed.

Warning. The user-provided type annotations TAU... are allowed
to refer to metavariables marked (not in scope). However, it is an
error if an out-of-scope metavariable appears in the instantiation for
an explicitly Pi-bound metavariable.
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data structure. In Proceedings of the 2007 Workshop on Workshop on
ML, ML ’07, page 37–46, New York, NY, USA, 2007. Association for
Computing Machinery.

[11] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith.
Implementing Mathematics with the NuPRL Proof Development System.
Prentice-Hall, NJ, 1986.

[12] Thierry Coquand and Gérard P. Huet. The calculus of constructions.
Inf. Comput., 76(2/3):95–120, 1988.

[13] David Delahaye. A tactic language for the system coq. In Michel Parigot
and Andrei Voronkov, editors, 7th International Conference on Logic

75



for Programming and Automated Reasoning (LPAR’00), volume 1955 of
Lecture Notes in Computer Science, pages 85–95. Springer, 2000.

[14] Peter Dybjer. Inductive families. Formal Aspects of Computing, 6:440–
465, 1997.

[15] Amy F. Felty, Alberto Momigliano, and Brigitte Pientka. Benchmarks
for reasoning with syntax trees containing binders and contexts of as-
sumptions. Math. Struct. in Comp. Science, 28(9):1507–1540, 2018.

[16] Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. The next
700 challenge problems for reasoning with higher-order abstract syntax
representations: Part 2 - a survey. Journal of Automated Reasoning,
55(4):307–372, 2015.

[17] Andrew Gacek. The Abella interactive theorem prover (system descrip-
tion). In 4th International Joint Conference on Automated Reasoning,
volume 5195 of Lecture Notes in Artificial Intelligence, pages 154–161.
Springer, 2008.

[18] Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic
approach to reasoning about computations. Journal of Automated Rea-
soning, 49(2):241–273, 2012.

[19] Jean-Yves Girard. Proofs and types. Number 7 in Cambridge tracts in
theoretical computer science. Cambridge University Press, Cambridge
[England] ; New York, 1989.

[20] Healfdene Goguen, Conor McBride, and James McKinna. Eliminat-
ing Dependent Pattern Matching. In Kokichi Futatsugi, Jean-Pierre
Jouannaud, and José Meseguer, editors, Algebra, Meaning, and Com-
putation: Essays dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, pages 521–540. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006.

76



[21] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.
Edinburgh LCF, volume 78 of Lecture Notes in Computer Science.
Springer, 1979.

[22] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143–184, January 1993.

[23] Rohan Jacob-Rao, Brigitte Pientka, and David Thibodeau. Index-
stratified types. In H. Kirchner, editor, 3rdd International Conference on
Formal Structures for Computation and Deduction (FSCD’18), LIPIcs,
pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
January 2018.

[24] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas,
and Derek Dreyer. Mtac2: typed tactics for backward reasoning in
Coq. Proceedings of the ACM on Programming Languages, 2(ICFP):1–
31, July 2018.

[25] Gregory Malecha and Jesper Bengtson. Extensible and Efficient Au-
tomation Through Reflective Tactics. In Peter Thiemann, editor,
Programming Languages and Systems, volume 9632, pages 532–559.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[26] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. The scratch programming language and environment.
ACM Trans. Comput. Educ., 10(4), November 2010.

[27] Conor McBride. Elimination with a Motive. In Paul Callaghan, Zhao-
hui Luo, James McKinna, Robert Pollack, and Robert Pollack, editors,
Types for Proofs and Programs, pages 197–216, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[28] R. Milner and R. S. Bird. The use of machines to assist in rigorous
proof [and discussion]. Philosophical Transactions of the Royal Society of

77



London. Series A, Mathematical and Physical Sciences, 312(1522):411–
422, 1984.

[29] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual
modal type theory. ACM Transactions on Computational Logic, 9(3):1–
49, 2008.

[30] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer, editors. Selected Pa-
pers on Automath, volume 133 of Studies in Logic and the Foundations
of Mathematics. Elsevier, 2004.

[31] Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, September 2007. Tech-
nical Report 33D.

[32] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. Hazelnut: A bidirectionally typed structure edi-
tor calculus. SIGPLAN Not., 52(1):86–99, January 2017.

[33] Lawrence C. Paulson. The foundation of a generic theorem prover. Jour-
nal of Automated Reasoning, 5(3):363–397, September 1989.

[34] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types
in the Calculus of Constructions. In M. Main, A. Melton, M. Mislove,
and D. Schmidt, editors, Mathematical Foundations of Programming
Semantics, pages 209–228, New York, NY, 1990. Springer-Verlag.

[35] Frank Pfenning and Carsten Schürmann. System description: Twelf
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