Programming in Lojban

Posted on December 12, 2019

Lojban would make for a cool dependently typed programming language. I will refer to the programming language as {fancylojban}. This name is derived from {fancu} and {lojban}, meaning “Function Lojban”.

I will use the following quotation convention in this document. - {curly braces} are for quoting proper Lojban text. - monospace is for quoting Fancylojban code. - “quotes” are for English text.

Goals and anti-goals

I have three basic goals for this project.

I have also some anti-goals, i.e. things that I am explicit not aiming for.

Features of Fancylojban

Types and values

A Fancylojban program consists of a number of definitions that make up a signature. Each definition is a single sentence, delimited as usual by .i.

Certain kinds of definitions must be grouped, so the paragraph marker ni'o is used to begin a definition block.

Defining simple types

A type definition consists of two parts: the definition of the type constant itself followed by zero or more constructor definitions. Consisting of multiple definitions, a full type declaration must be placed in a paragraph. The first sentence of the paragraph must defined the type constant.

ni'o si'o TYPE lo TYPE_1 lo TYPE_2 ...

The {si’o} abstractor defines a new type indexed by TYPE_1, TYPE_2 and so on. If no indices are provided, then a simple type is defined.

All types are defined by default within universe level zero. To define a large type, at a higher universe level, one must explicitly state to what level the type belongs. The syntax concretely is to place mu'ecmi lo PA moi before the definition and connect it to the definition with gi'e.

mu'ecmi is the lujvo formed from “munje” (universe) and “cmima” (set membership).

ni'o mu'ecmi lo PA moi gi'e si'o TYPE ...

For example, I define a new type constant for natural numbers, at level zero.

.i si'o namcu

Now let’s define constructors for this type. Constructors are the canonical values of a type, so for natural numbers we have two canonical values: zero is a natural number, and the successor of a natural number is a natural number.

.i lo dzero cu namcu
.i lo sakcu be lo namcu cu namcu

These definitions can also be flipped for readability

.i namcu fa
   lo dzero
.i namcu fa
   lo sakcu be lo namcu

A constructor definition uses the type being constructed as the selbri. The constructor itself is in the x1. Arguments to the constructor are given with be (and bei).

Polymorphism: types indexed by types

Fancylojban supports polymorphism by allowing quantification over a universe. This enables the programmer to write generic code, e.g. generic lists.

ni'o si'o liste lo mu'ecmi

Here I use lo mu'ecmi to mean “a type”, so I am indexing the definition of liste with a type.

I define the empty list as a list of any type, and then define a cons cell by requiring that the type of the element be the same as the type of the list.

.i ro da poi mu'ecmi zo'u
   lo nilso cu liste da
.i ro da poi mu'ecmi zo'u
   liste da fa
   lo konsi
      be lo me'au da
      bei lo liste be da

I use the special cmavo {me’au} to unbox the {mu’ecmi1} {da} to a type, which I can then take the {lo} of to refer to an element of that type.

I use a universal quantifier ro in the above examples to quantify over all types. mu'ecmi2 is omitted, so it defaults to lo no moi, i.e. level zero.

I can construct a concrete list by assigning it a name with goi.

  la .dzeros. goi
  lo konsi
  be lo dzero
  bei lo konsi
    be lo dzero
    bei lo konsi
      be lo dzero
      bei lo nilso
  cu liste lo namcu

This defines la .dzeros. in the below program as equal to the given concrete list consisting of three zeroes.

Unlike in Lojban, in which {goi} is technically symmetric but in practice defining the variable on the right, Fancylojban’s {goi} operator requires the variable begin defined to appear on the left.

Polymorphism: types parametrized by types

A more convenient syntax exists for defining types parametrized by another type, rather than indexed by another type. See this StackOverflow answer regarding the difference.

Specifically, we can use the special selbri variables brodV (for any vowel V) to refer to a type, and use tanru. This gives a very natural reading of {broda liste} as “foo list”.

ni'o si'o broda liste
.i lo nilso cu broda liste
.i lo konsi be lo broda bei lo broda liste
   cu broda liste

Here, the variable broda scopes over each definition in the block. Each definition must construct a broda liste; it wouldn’t be possible to have one definition construct a namcu liste. In contrast, with indices it is possible to have each constructor have a different type (within the indexed family of types being defined), e.g.

ni'o si'o liste lo mu'ecmi (tozoigy. list indexed by a type gy.toi)
.i lo nacnilso cu liste lo namcu
.i lo nilso cu liste ro da poi mu'ecmi
.i ...

The nacnilso constructor constructs an empty list that is forces its index to be namcu. Notice also in the definition of nilso here that we are not using a prenex. As in ordinary Lojban, quantified term variables such as {da} can be used outside a prenex. However they are subject to the following condition:

Since the quantified variable da is only appearing once, we can further simplify the definition of nilso to

.i lo nilso cu liste ro mu'ecmi

which is syntax sugar for the ro da poi ... construct.

Dependent types: types indexed by values

In the previous sections, I discussed types indexed by other types. In Fancylojban, it is possible to index types by values. This defines a family of types, with one proper type for each value of the index type.

For example, I can define the canonical type family: a list of numbers indexed by its length.

ni'o si'o vekto lo namcu (tozoigy. "foo vector of <a number>" gy.toi)
.i lo veknilso cu vekto lo dzero
.i ro da poi namcu zo'u (tozoigy. for all numbers N ... gy.toi)
  vekto lo sakcu be da fa (tozoigy. a vector of (suc N) length is ... gy.toi)
    lo vekykonsi (tozoigy. the cons cell of ... gy.toi)
    be lo namcu (tozoigy. a number and ... gy.toi)
    bei lo vekto be da (tozoigy. a vector of length N gy.toi)

For example, we can build a concrete value of type vekto li ci. (I will allow myself to write li N for any natural number N to mean lo sakcu be ... lo dzero with sakcu appearing N times.)

ni'o la .vekcis. goi
  lo vekykonsi
    be li no
    bei lo vekykonsi
      be li pa
      bei lo vekykonsi
        be li re
        bei lo veknilso
  cu vekto li ci

We can mix indices and parameters to define a homogeneous vector of a statically-known length.

ni'o si'o broda vekto lo namcu
.i lo veknilso cu broda vekto lo dzero
.i roda zo'u (tozoigy. can omit the type annotation on da ... gy.toi)
   broda vekto lo sakcu be da (tozoigy. because sakcu2 must be a namcu1 gy.toi)
   fa lo vekykonsi
     be lo broda
     bei lo vekto be da

The ordinary left-associativity of tanru give rise to a natural interpretation of nested parameters. Here are some examples:

Higher-order functions

The word fancu is used to form simple and dependent function types. For example, the type of the function that calculates the length of a generic list would be fancu lo broda liste lo namcu. (Fancylojban does not use fancu4.)

Therefore we can express the type of the “map” function, which applies a function to each element of a list to form a new list, as

  lo fancu be lo broda bei lo brode be'o
  lo broda liste
  lo brode liste

The word {ce’o} is used to form tuples. So I am expressing the type of a function that

We will see shortly how to define this function, following the discussion of recursion.

Functions and computations

In this section, I will discuss how to define functions, both in a primitive fashion and in a high-level fashion. Then, I will discuss how to perform recursion on simple inductively defined datatypes such as namcu.

Defining functions: the hard way

In the previous section, I constructed concrete lists and numbers by simply using the appropriate type as the main selbri of a statement and giving the value in the x1. I bound that value to a name using goi. This same strategy can be used for defining a named function. Suppose we wish to define a function from naturals to naturals that adds two to its input. At a high level, this merely means applying the sakcu constructor twice to the input.

  lo ka relsumji ku goi
  cu fancu lo namcu lo namcu

Notice here that I have used {lo ka relsumji} on the left-hand side of goi. This is called pattern-matching {ka} since it defines the selbri variable relsumji. For example, had we written la relsumji ku goi ..., this would define the term la relsumji to be the function, thus requiring us to unbox la relsumji to a selbri with {me’au} every time we actually want to call it. Pattern-matching {ka} gives a lightweight way to define selbri resulting from computations.

Now it suffices to construct an expression in ??? that has the appropriate type. Such an expression ought to be an anonymous function, so I use Lojban’s {ka}-abstraction. Each {ce’u} in the abstraction body denotes an input, and {makau} denotes the output.

The way {ka}-abstractions are used in Fancylojban does differ from the way they are used in Lojban. In Lojban, a {ka}-abstraction has a (strongly suggested) implicit {ce’u} in the x1 position if no explicit {ce’u} is given. Furthermore, multiple {makau} are allowed in Lojban. In Fancylojban, the rules are the following.

The complete example of defining a function that adds two to its input is therefore:

  la relsumji ku goi
  lo ka sakcu lo sakcu be ce'u
  cu fancu lo namcu lo namcu

Defining functions: the easy way

This is a quite verbose way to define a function. Fancylojban supports a more lightweight, alternative syntax, in which the function selbri is defined directly, involving the ca'e keyword. The first sentence of the paragraph gives the type signature of the function being defined. The second sentence gives its definition by using universally quantified variables to refer to parameters. Any variable is fine; it doesn’t have to be from the {da}, {de}, {di} series. You can use {ko’V} or {fo’V} series if you want, or even names with {la}.

ni'o ca'e lo namcu cu relsumji lo namcu
.i relsumji ro da
  fa lo sakcu be lo sakcu be da

This function has the following computational behaviour:

For example, I can define a higher-order function which accepts a function from broda to broda and applies it twice to an input of type broda.

ni'o ca'e
  lo broda
  cu relfancu
  lo fancu be lo broda bei lo broda
  lo broda
.i relfancu ro da ro de
  fa lo me'au da be lo me'au da be de

Yuck. Since da has type fancu lo broda lo broda, I need to unbox it to a selbri using {me’au} in order to apply it to an argument. Because I want to apply the function twice, I need to do this unboxing twice.

To remedy this, we can use Fancylojban’s pattern-matching {ka} in order to introduce selbri (higher-order) variables. Let’s use this to try to define relfancu again.

ni'o ca'e
  lo broda
  cu relfancu
  lo fancu be lo broda bei lo broda
  lo broda
.i relfancu lo ka bu'a ku ro da
fa lo bu'a
  be lo bu'a
    be da

This is great, since it avoids the use of the unboxing operator {me’au}.

Let’s define another useful higher-order function, namely composition.

ni'o ca'e lo fancu be da be di
    lo fancu be de bei di
    lo fancu be da bei de
.i fancyfancu lo ka bu'a ku lo ka bu'e ku ro da
fa lo bu'a
  be lo bu'e
    be da

Using this, I can for instance redefine relfancu in terms of fancyfancu.

ni'o ca'e
  lo broda
  cu relfancu
  lo fancu be lo broda bei lo broda
  lo broda
.i relfancu ro da ro de
fa lo fancyfancu
  be da
  bei da
  bei de

Here we compose the input function with itself by calling fancyfancu. Note that there was no need to use pattern-matching ka here since I just want to pass the function along verbatim to fancyfancu.

Using relfancu and relsumji, I can define vonsumji, which adds four to an input number. Here I demonstrate using pattern-matching {ka} with {goi} as well as local definitions appearing in a prenex.

ni'o ca'e lo namcu cu vonsumji lo namcu
.i ro da
   lo ka bu'a ku
     goi lo ka relfancu me'ei relsumji ce'u
lo bu'a be da cu vonsumji da

First, note the use of me'ei. It is the inverse of me'au. Whereas me'au converts a first-order term (a sumti) to a higher-order term (a selbri), me'ei converts a higher-order term to a first-order term. I could have written lo ka relfancu but this would have required additional terminators.

Second, note that lo ka relfancu me'ei relsumji ce'u is a partial application since relfancu is defined as taking two inputs. This gives us that bu'a is equal to relfancu me'ei relsumji so bu'a ko'a is relfancu me'ei relsumji ko'a.

Perhaps in this case however, it can be simpler to define the function using the “hard” syntax and pattern-matching {ka}.

ni'o fancu lo namcu lo namcu
fa lo ka vonsumji ce'u ku goi
  lo ka relfancu me'ei relsumji ce'u

This is a true higher-order definition, since we simply defined vonsumji as a partial application of relfancu to relsumji.


All the functions I have defined so far just shuffle parameters around and call other functions. What if we want to do things with the datatypes we define? For example, how can we define addition of numbers? The length of a list? The concatenation of two vectors?

Such functions require the use of recursion.

An inductively defined type such as namcu admits an induction principle. I will concentrate on recursion instead of induction here, since it’s simpler.

Fancylojban has one general recursion operator rekso defined as

rekso = x1 is the result of recursion on x2 with cases x3 x4 ...

To specify which recursion principle is being used, I use a tanru: namcu rekso refers to recursion on natural numbers.

For an inductive type such as namcu, there are two cases because there are two constructors. For example, I define the ckopi function which copies a number like this.

ni'o ca'e lo namcu cu ckopi lo namcu
.i ckopi ro da
fa lo namcu rekso
 be da
 bei lo dzero
 bei lo ka sakcu ce'u
cu ckopi ko'a

By the way, one could simplify lo ka sakcu ce'u to me'ei sakcu.

To understand why this copies a number, we need to understand the operational semantics of namcu rekso. The first case of namcu rekso is the case for zero, since we defined zero first. The second case is the case for successor, since we defined it second.

We have the following evaluation rules for namcu rekso:

  1. lo namcu rekso be lo dzero bei X bei Y evaluates to X
  2. lo namcu rekso be lo sakcu be N be'o bei X bei Y evaluates to lo me'au Y be lo namcu rekso be N bei X bei Y

where me'au is a function unboxing operator. That is, it converts a sumti representing a function into a selbri. Notice then that Y is receiving as its input the result of the recursive call on the smaller number N!

In particular, it has the following evaluation rule

With these rules in mind, let’s trace the evaluation of lo ckopi be lo sakcu be lo sakcu be lo dzero, i.e. copy 2.

lo ckopi be lo sakcu be lo sakcu be lo dzero
=> lo namcu rekso
      be lo sakcu be lo sakcu be lo dzero
      bei lo dzero
      bei lo ka makau sakcu ce'u
=> lo me'au lo ka makau sakcu ce'u ku
      be lo namcu rekso
            be lo sakcu be lo dzero
            bei lo dzero
            bei lo ka makau sakcu ce'u
   (by namcu rekso rule 2)
=> lo sakcu be
      lo namcu rekso 
         be lo sakcu be lo dzero
         bei lo dzero
         bei lo ka makau sakcu ce'u
   (by me'au simplification rule)
=> lo sakcu be
      lo sakcu be
         lo namcu rekso
            be lo dzero
            bei lo dzero
            bei lo ka makau sakcu ce'u
   (by namcu rekso rule 2 and me'au simplification)
=> lo sakcu be
      lo sakcu be
         lo dzero
   (by namcu rekso rule 1)

So indeed ckopi does perform a recursive copy of its input.

Of course, this is a copying function that takes linear time to execute. What if just want to define an identity function?

ni'o ca'e lo broda cu .aidzi lo broda
.i da .aidzi ro da

TODO: more examples of recursion: on lists, on vectors, etc.


TODO: explain how to define predicates, and how to use induction to prove properties about things.

Pattern matching

TODO: explain pattern matching syntax as a generalization of the ni'o ca'e construct.